Reliable Winding-Based DC-Bus Capacitor Discharge Technique Over Full-Speed Range for IPMSM Drive in Electric Vehicles Without Position Sensor

2020 ◽  
Vol 67 (10) ◽  
pp. 8131-8142 ◽  
Author(s):  
Chao Gong ◽  
Yihua Hu ◽  
Huiqing Wen ◽  
Guipeng Chen ◽  
Wenzhen Li ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 220
Author(s):  
Cheng Lin ◽  
Jilei Xing ◽  
Xingming Zhuang

Sensorless control technology of PMSMs is of great importance for safety and reliability in electric vehicles. Among all existing methods, only the extended flux-based method has great performance over all speed range. However, the accuracy and reliability of the extended flux rotor position observer are greatly affected by the dead-time effect. In this paper, the extended flux-based observer is adopted to develop a sensorless control system. The influence of dead-time effect on the observer is analyzed and a dead-time correction method is specially designed to guarantee the reliability of the whole control system. A comparison of estimation precision among the extended flux-based method, the electromotive force (EMF)-based method and the high frequency signal injection method is given by simulations. The performance of the proposed sensorless control system is verified by experiments. The experimental results show that the proposed extended flux-based sensorless control system with dead-time correction has satisfactory performance over full speed range in both loaded and non-loaded situations. The estimation error of rotor speed is within 4% in all working conditions. The dead-time correction method improves the reliability of the control system effectively.


2021 ◽  
Vol 12 (3) ◽  
pp. 107
Author(s):  
Tao Chen ◽  
Peng Fu ◽  
Xiaojiao Chen ◽  
Sheng Dou ◽  
Liansheng Huang ◽  
...  

This paper presents a systematic structure and a control strategy for the electric vehicle charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles. This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding some switches to meet different charging requirements. In the case of multiple electric vehicles charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes. This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of change parameter variables within a limited range. The DC-bus current fluctuation is still minimal. The charging station system structure and the proposed system-level optimization control algorithm can improve the DC-side current stability through model calculation and simulation verification.


Sign in / Sign up

Export Citation Format

Share Document