Output-Constrained Robust Sliding Mode Based Nonlinear Active Suspension Control

2020 ◽  
Vol 67 (12) ◽  
pp. 10652-10662 ◽  
Author(s):  
Jagat Jyoti Rath ◽  
Michael Defoort ◽  
Chouki Sentouh ◽  
Hamid Reza Karimi ◽  
Kalyana Chakravarthy Veluvolu
2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Yechen Qin ◽  
Feng Zhao ◽  
Zhenfeng Wang ◽  
Liang Gu ◽  
Mingming Dong

This paper presents a comprehensive comparison and analysis for the effect of time delay on the five most representative semi-active suspension control strategies, and refers to four unsolved problems related to semi-active suspension performance and delay mechanism that existed. Dynamic characteristics of a commercially available continuous damping control (CDC) damper were first studied, and a material test system (MTS) load frame was used to depict the velocity-force map for a CDC damper. Both inverse and boundary models were developed to determine dynamic characteristics of the damper. In addition, in order for an improper damper delay of the form t+τ to be corrected, a delay mechanism of controllable damper was discussed in detail. Numerical simulation for five control strategies, i.e., modified skyhook control SC, hybrid control (HC), COC, model reference sliding mode control (MRSMC), and integrated error neuro control (IENC), with three different time delays: 5 ms, 10 ms, and 15 ms was performed. Simulation results displayed that by changing control weights/variables, performance of all five control strategies varied from being ride comfort oriented to being road handling oriented. Furthermore, increase in delay time resulted in deterioration of both ride comfort and road handling. Specifically, ride comfort was affected more than road handling. The answers to all four questions were finally provided according to simulation results.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5560
Author(s):  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Waldemar Rączka

In the paper authors consider the active suspension of the wheeled vehicle. The proposed controller consists of a sliding mode controller used to roll reduction and linear regulators with quadratic performance index (LQRs) for struts control was shown. The energy consumption optimization was taken into account at the stage of strut controllers synthesis. The studied system is half of the active vehicle suspension using hydraulic actuators to increase the ride comfort and keeping safety. Instead of installing additional actuators in the form of active anti-roll bars, it has been decided to expand the active suspension control algorithm by adding extra functionality that accounts for the roll. The suggested algorithm synthesis method is based on the object decomposition into two subsystems whose controllers can be synthesized separately. Individual suspension struts are controlled by actuators that use the controllers whose parameters have been calculated with the LQR method. The mathematical model of the actuator applied in the work takes into account its nonlinear nature and the dynamics of the servovalve. The simulation tests of the built active suspension control system have been performed. In the proposed solution, the vertical displacements caused by uneven road surface are reduced by controllers related directly to suspension strut actuators.


2017 ◽  
Vol 64 (2) ◽  
pp. 1392-1403 ◽  
Author(s):  
Jagat Jyoti Rath ◽  
Michael Defoort ◽  
Hamid Reza Karimi ◽  
Kalyana Chakravarthy Veluvolu

Author(s):  
Chih-Jer Lin ◽  
Wan-Quan Xu

This paper presents a complete analysis of the cruise control and the active suspension control for the high speed train (HST). For a train system, the system are designed to being safe and reliable with high efficiency and fault tolerance; however, users require faster, more stable and more comfort transportation. To make sure the safety at such high speed, automatic train control (ATC) is needed and used for the modern HST to guarantee the safety and monitor the cruise status. For HST, the conventional (passive) suspension techniques have reached the limit of its optimization and development; therefore, the active suspension system is necessary for HST to obtain better comfort. In this paper, the extended sliding mode control is studied and applied to the cruise and active suspension of the HST.


2015 ◽  
pp. 992-1039
Author(s):  
Laiq Khan ◽  
Shahid Qamar

Suspension system of a vehicle is used to minimize the effect of different road disturbances for ride comfort and improvement of vehicle control. A passive suspension system responds only to the deflection of the strut. The main objective of this work is to design an efficient active suspension control for a full car model with 8-Degrees Of Freedom (DOF) using adaptive soft-computing technique. So, in this study, an Adaptive Neuro-Fuzzy based Sliding Mode Control (ANFSMC) strategy is used for full car active suspension control to improve the ride comfort and vehicle stability. The detailed mathematical model of ANFSMC has been developed and successfully applied to a full car model. The robustness of the presented ANFSMC has been proved on the basis of different performance indices. The analysis of MATLAB/SMULINK based simulation results reveals that the proposed ANFSMC has better ride comfort and vehicle handling as compared to Adaptive PID (APID), Adaptive Mamdani Fuzzy Logic (AMFL), passive, and semi-active suspension systems. The performance of the active suspension has been optimized in terms of displacement of seat, heave, pitch, and roll.


Sign in / Sign up

Export Citation Format

Share Document