Online Adaptive Neuro-Fuzzy Based Full Car Suspension Control Strategy

2015 ◽  
pp. 992-1039
Author(s):  
Laiq Khan ◽  
Shahid Qamar

Suspension system of a vehicle is used to minimize the effect of different road disturbances for ride comfort and improvement of vehicle control. A passive suspension system responds only to the deflection of the strut. The main objective of this work is to design an efficient active suspension control for a full car model with 8-Degrees Of Freedom (DOF) using adaptive soft-computing technique. So, in this study, an Adaptive Neuro-Fuzzy based Sliding Mode Control (ANFSMC) strategy is used for full car active suspension control to improve the ride comfort and vehicle stability. The detailed mathematical model of ANFSMC has been developed and successfully applied to a full car model. The robustness of the presented ANFSMC has been proved on the basis of different performance indices. The analysis of MATLAB/SMULINK based simulation results reveals that the proposed ANFSMC has better ride comfort and vehicle handling as compared to Adaptive PID (APID), Adaptive Mamdani Fuzzy Logic (AMFL), passive, and semi-active suspension systems. The performance of the active suspension has been optimized in terms of displacement of seat, heave, pitch, and roll.

Author(s):  
Laiq Khan ◽  
Shahid Qamar

Suspension system of a vehicle is used to minimize the effect of different road disturbances for ride comfort and improvement of vehicle control. A passive suspension system responds only to the deflection of the strut. The main objective of this work is to design an efficient active suspension control for a full car model with 8-Degrees Of Freedom (DOF) using adaptive soft-computing technique. So, in this study, an Adaptive Neuro-Fuzzy based Sliding Mode Control (ANFSMC) strategy is used for full car active suspension control to improve the ride comfort and vehicle stability. The detailed mathematical model of ANFSMC has been developed and successfully applied to a full car model. The robustness of the presented ANFSMC has been proved on the basis of different performance indices. The analysis of MATLAB/SMULINK based simulation results reveals that the proposed ANFSMC has better ride comfort and vehicle handling as compared to Adaptive PID (APID), Adaptive Mamdani Fuzzy Logic (AMFL), passive, and semi-active suspension systems. The performance of the active suspension has been optimized in terms of displacement of seat, heave, pitch, and roll.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Yechen Qin ◽  
Feng Zhao ◽  
Zhenfeng Wang ◽  
Liang Gu ◽  
Mingming Dong

This paper presents a comprehensive comparison and analysis for the effect of time delay on the five most representative semi-active suspension control strategies, and refers to four unsolved problems related to semi-active suspension performance and delay mechanism that existed. Dynamic characteristics of a commercially available continuous damping control (CDC) damper were first studied, and a material test system (MTS) load frame was used to depict the velocity-force map for a CDC damper. Both inverse and boundary models were developed to determine dynamic characteristics of the damper. In addition, in order for an improper damper delay of the form t+τ to be corrected, a delay mechanism of controllable damper was discussed in detail. Numerical simulation for five control strategies, i.e., modified skyhook control SC, hybrid control (HC), COC, model reference sliding mode control (MRSMC), and integrated error neuro control (IENC), with three different time delays: 5 ms, 10 ms, and 15 ms was performed. Simulation results displayed that by changing control weights/variables, performance of all five control strategies varied from being ride comfort oriented to being road handling oriented. Furthermore, increase in delay time resulted in deterioration of both ride comfort and road handling. Specifically, ride comfort was affected more than road handling. The answers to all four questions were finally provided according to simulation results.


Author(s):  
Gurubasavaraju Tharehalli mata ◽  
Vijay Mokenapalli ◽  
Hemanth Krishna

This study assesses the dynamic performance of the semi-active quarter car vehicle under random road conditions through a new approach. The monotube MR damper is modelled using non-parametric method based on the dynamic characteristics obtained from the experiments. This model is used as the variable damper in a semi-active suspension. In order to control the vibration caused under random road excitation, an optimal sliding mode controller (SMC) is utilised. Particle swarm optimisation (PSO) is coupled to identify the parameters of the SMC. Three optimal criteria are used for determining the best sliding mode controller parameters which are later used in estimating the ride comfort and road handling of a semi-active suspension system. A comparison between the SMC, Skyhook, Ground hook and PID controller suggests that the optimal parameters with SMC have better controllability than the PID controller. SMC has also provided better controllability than the PID controller at higher road roughness.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5560
Author(s):  
Jarosław Konieczny ◽  
Marek Sibielak ◽  
Waldemar Rączka

In the paper authors consider the active suspension of the wheeled vehicle. The proposed controller consists of a sliding mode controller used to roll reduction and linear regulators with quadratic performance index (LQRs) for struts control was shown. The energy consumption optimization was taken into account at the stage of strut controllers synthesis. The studied system is half of the active vehicle suspension using hydraulic actuators to increase the ride comfort and keeping safety. Instead of installing additional actuators in the form of active anti-roll bars, it has been decided to expand the active suspension control algorithm by adding extra functionality that accounts for the roll. The suggested algorithm synthesis method is based on the object decomposition into two subsystems whose controllers can be synthesized separately. Individual suspension struts are controlled by actuators that use the controllers whose parameters have been calculated with the LQR method. The mathematical model of the actuator applied in the work takes into account its nonlinear nature and the dynamics of the servovalve. The simulation tests of the built active suspension control system have been performed. In the proposed solution, the vertical displacements caused by uneven road surface are reduced by controllers related directly to suspension strut actuators.


Author(s):  
Haoping Wang ◽  
Yeqing Lu ◽  
Yang Tian ◽  
Nicolai Christov

This article deals with the control problem of 7-degrees of freedom full-car suspension system which takes into account the spring-damper nonlinearities, unmodeled dynamics and external disturbances. The existing active disturbance rejection control uses an extended state observer to estimate the “total disturbance” and eliminate it with state error feedback. In this article, a new type of active disturbance rejection control is developed to improve the ride comfort of full car suspension systems taking into account the suspension nonlinearities and actuator saturation. The proposed controller combines active disturbance rejection control and fuzzy sliding mode control and is called Fuzzy Sliding Mode active disturbance rejection control. To validate the system mathematical model and analyze the controller performance, a virtual prototype is built in Adams. The simulation results demonstrate better performance of Fuzzy Sliding Mode active disturbance rejection control compared to the existing active disturbance rejection control.


Author(s):  
Amirhossein Kazemipour ◽  
Alireza B Novinzadeh

In this paper, a control system is designed for a vehicle active suspension system. In particular, a novel terminal sliding-mode-based fault-tolerant control strategy is presented for the control problem of a nonlinear quarter-car suspension model in the presence of model uncertainties, unknown external disturbances, and actuator failures. The adaptation algorithms are introduced to obviate the need for prior information of the bounds of faults in actuators and uncertainties in the model of the active suspension system. The finite-time convergence of the closed-loop system trajectories is proved by Lyapunov's stability theorem under the suggested control method. Finally, detailed simulations are presented to demonstrate the efficacy and implementation of the developed control strategy.


Author(s):  
Yi Chen ◽  
Zhong-Lai Wang ◽  
Jing Qiu ◽  
Hong-Zhong Huang

A polynomial function supervising fuzzy sliding mode control (PSFαSMC), which embedded with skyhook surface method, is proposed for the ride comfort of a vehicle semi-active suspension. The multi-objective microgenetic algorithm (MOμGA) has been utilized to determine the PSFαSMC controller’s parameter alignment in a training process with three ride comfort objectives for the vehicle semi-active suspension, which is called the “offline” step. Then, the optimized parameters are applied to the real-time control process by the polynomial function supervising controller, which is named “online” step. A two-degree-of-freedom dynamic model of the vehicle semi-active suspension systems with the stability analysis is given for passenger’s ride comfort enhancement studies, and a simulation with the given initial conditions has been devised in MATLAB. The numerical results have shown that this hybrid control method is able to provide real-time enhanced level of reliable ride comfort performance for the semi-active suspension system.


2014 ◽  
Vol 984-985 ◽  
pp. 629-633
Author(s):  
Palanisamy Sathishkumar ◽  
Jeyaraj Jancirani ◽  
John Dennie

The present article introduces an approach that combines passive and active elements to improve the ride and passenger comfort. The main aim of vehicle suspension system should isolate the vehicle body from road unevenness for maintaining ride and passenger comfort. The ride and passenger comfort is improved by reducing the car body acceleration caused by the irregular road surface. The vehicle body along with the wheel system is modelled as two degrees of freedom one fourth of car model. The model is tested on road bump with severe peak amplitude excitations. In the conclusion, a comparison of active, semi-active and passive suspension is shown using MATLAB simulations.


Sign in / Sign up

Export Citation Format

Share Document