Analysis of the Sideband Electromagnetic Noise in Permanent Magnet Synchronous Motors Generated by Rotor Position Error

Author(s):  
Wenzhe Deng ◽  
Shuguang Zuo
2013 ◽  
Vol 133 (9) ◽  
pp. 902-908 ◽  
Author(s):  
Toshifumi Sakai ◽  
Kiyoshi Sakamoto ◽  
Daigo Kaneko ◽  
Junnosuke Nakatsugawa ◽  
Yoshitaka Iwaji

Author(s):  
Qichao Dong ◽  
Xintian Liu ◽  
Hongzhong Qi ◽  
Yafu Zhou

In this study, a multiphysics finite element method is proposed to predict and evaluate the electromagnetic vibration and noise of the permanent magnet synchronous motors. First, the expressions of radial electromagnetic force waves were derived based on the established mathematical models of airgap magnetic field using the analytical methods. Subsequently, the main circumferential spatial orders influencing electromagnetic noise were analyzed and discussed. Then, a multiphysics simulation model that consists of mechanical field, electromagnetic field, and acoustic field was established for the calculation of the electromagnetic radiation noise. Finally, the multiphysics simulation model developed for the electromagnetic vibration and noise prediction was validated by comparing the finite element analysis and experimental data. It is shown that, although the local differences exist, the results from the finite element calculation and test analysis have a good agreement on the analytical mechanism overall, both in amplitude and main orders. In addition, this paper has made a detailed analysis to the electromagnetic noise generation mechanism, which lays the basis for further study in predicting and suppressing the electromagnetic vibration and noise of the drive motors of pure electric vehicle.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Wenbao Hou ◽  
Guojun Tan ◽  
Zang Ling

An efficient estimation of the rotor position has always been a premise of the reliable operation for the interior permanent magnet synchronous motors (IPMSM), especially for low-speed conditions because of the small back electromotive force (EMF) and low signal-to-noise ratio (SNR). The commonly used observation method, e.g., sliding mode observer (SMO), is suitable for these surface mounted motors and has no great adaptability to the saliency. In this paper, a novel rotor position (including the real-time position and initial position) estimation method was proposed based on the traditional high-frequency signal injection method. Firstly, high-frequency signals were injected to induce the high-frequency current components which contain the rotor position information. Then, the sliding discrete Fourier transform (SDFT) algorithm was used to extract the amplitudes of the induced current components which could be used to get the real-time and initial rotor positions by a proportional integral (PI) regulator and a polarity identification. Lastly, with the established experiments’ platform, the estimation tests of the rotor position at a low speed have been completed to make verification of the effectiveness of the approach studied in this paper.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 238
Author(s):  
Young-Geun Lee ◽  
Tae-Kyoung Bang ◽  
Jeong-In Lee ◽  
Jong-Hyeon Woo ◽  
Sung-Tae Jo ◽  
...  

In this study, we performed the electromagnetic and mechanical characteristic analyses of an 8-pole 12-slot interior permanent magnet synchronous motor (IPMSM). Permanent magnet synchronous motors are classified into surface permanent magnet synchronous motor and interior permanent magnet synchronous motors according to the type of rotor. The IPM type is advantageous for high-speed operation because of the structure where the permanent magnet is embedded inside the rotor, and it has the advantage of having a high output density by generating not only the magnetic torque of the permanent magnet, but also the reluctance torque. However, such a motor has more vibration/noise sources than other types, owing to changes in reluctance. The sources of motor noise/vibration can be broadly classified into electromagnetic, mechanical, and aerodynamic sources. Electromagnetic noise sources are classified into electromagnetic excitation sources, torque pulsations, and unbalanced magnetic forces (UMFs). Vibration and noise cause machine malfunctions and affect the entire system. Therefore, it is important to analyze the electromagnetic vibration source. In this study, the electromagnetic characteristics of an IPMSM were analyzed through the finite element method to derive the UMF. Vibration and noise analyses were performed by electromagnetic–mechanical coupling analysis, and vibration and noise characteristics based on electromagnetic noise sources were analyzed.


Sign in / Sign up

Export Citation Format

Share Document