Hallucinating Face Image by Regularization Models in High-Resolution Feature Space

2018 ◽  
Vol 27 (6) ◽  
pp. 2980-2995 ◽  
Author(s):  
Jingang Shi ◽  
Xin Liu ◽  
Yuan Zong ◽  
Chun Qi ◽  
Guoying Zhao
2021 ◽  
pp. 1-15
Author(s):  
Yongjie Chu ◽  
Touqeer Ahmad ◽  
Lindu Zhao

Low-resolution face recognition with one-shot is a prevalent problem encountered in law enforcement, where it generally requires to recognize the low-resolution face images captured by surveillance cameras with the only one high-resolution profile face image in the database. The problem is very tough because the available samples is quite few and the quality of unknown images is quite low. To effectively address this issue, this paper proposes Adapted Discriminative Coupled Mappings (AdaDCM) approach, which integrates domain adaptation and discriminative learning. To achieve good domain adaptation performance for small size dataset, a new domain adaptation technique called Bidirectional Locality Matching-based Domain Adaptation (BLM-DA) is first developed. Then the proposed AdaDCM is formulated by unifying BLM-DA and discriminative coupled mappings into a single framework. AdaDCM is extensively evaluated on FERET, LFW, and SCface databases, which includes LR face images obtained in constrained, unconstrained, and real-world environment. The promising results on these datasets demonstrate the effectiveness of AdaDCM in LR face recognition with one-shot.


2015 ◽  
Vol 713-715 ◽  
pp. 1589-1592
Author(s):  
Yong Li ◽  
Jing Wen Xu ◽  
Jun Fang Zhao ◽  
Yu Dan Zhao ◽  
Xin Li

Mean shift algorithm is a robust approach toward feature space analysis, which has been wildly used for natural scene image and medical image segmentation. Due to fuzzy boundary and low accuracy of Mean shift segmentation method, this paper puts forward to an improved Mean shift segmentation method of high-resolution remote sensing image based on LBP and Canny features. The results show that this improved Mean shift segmentation access can enhance segmentation accuracy compared to the traditional Mean shift.


Author(s):  
HUANXI LIU ◽  
TIANHONG ZHU

Face hallucination is to synthesize high-resolution face image from the input low-resolution one. Although many two-step learning-based face hallucination approaches have been developed, they suffer from the expensive computational cost due to the separate calculation of the global and local models. To overcome this problem, we propose a correlative two-step learning-based face hallucination approach which bridges the gap between the global model and the local model. In the global phase, we build a global face hallucination framework by combining the steerable pyramid decomposition and the reconstruction. In the residue compensation phase, based on the combination weights and constituent samples obtained in the global phase, a residue face image is synthesized by the neighbor reconstruction algorithm to compensate the hallucinated global face image with subtle facial features. The ultimate hallucinated result is synthesized by adding the residue face image to the global face image. Compared with existing methods, in the global phase, our global face image is more similar to the original high-resolution face image. Furthermore, in the residue compensation phase, we use the combination weights and constituent samples obtained in the global phase to compute the residue face image, by which the computational efficiency can be greatly improved without compromising the quality of facial details. The experimental results and comparisons demonstrate that our approach can not only generate convincible high-resolution face images efficiently, but also has high computational efficiency. Furthermore, our proposed approach can be used to restore the damaged face images in image inpainting. The efficacy of our approach is validated by recovering the damaged face images with visually good results.


2014 ◽  
Vol 687-691 ◽  
pp. 3747-3750
Author(s):  
Zhi Zhuang Guo ◽  
Xiao Ling Wang

The resolution of the face image in video may lower than 16*16 in environmental such as ultra long distance, poor illumination and so on, with the very low resolution (VLR) face image the existing face super-resolution (SR) methods do not perform well. In this paper, we proposes a new algorithms by learning the relationship between high-resolution (HR) image space and the VLR image space for face SR.A new constrain, new data constrain are design for reconstruct HR face image form VLR face image. The Experiment results show that the proposed method can recover a clear face image from the VLR face image.


Sign in / Sign up

Export Citation Format

Share Document