Kalman Filter For Spatial-temporal Regularized Correlation Filters

Author(s):  
Sheng Feng ◽  
Keli Hu ◽  
En Fan ◽  
Liping Zhao ◽  
Chengdong Wu
Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1625 ◽  
Author(s):  
Hao Yang ◽  
Yingqing Huang ◽  
Zhihong Xie

In the field of visual tracking, discriminative correlation filter (DCF)-based trackers have made remarkable achievements with their high computational efficiency. The crucial challenge that still remains is how to construct qualified samples without boundary effects and redetect occluded targets. In this paper a feature-enhanced discriminative correlation filter (FEDCF) tracker is proposed, which utilizes the color statistical model to strengthen the texture features (like the histograms of oriented gradient of HOG) and uses the spatial-prior function to suppress the boundary effects. Then, improved correlation filters using the enhanced features are built, the optimal functions of which can be effectively solved by Gauss–Seidel iteration. In addition, the average peak-response difference (APRD) is proposed to reflect the degree of target-occlusion according to the target response, and an adaptive Kalman filter is established to support the target redetection. The proposed tracker achieved a success plot performance of 67.8% with 5.1 fps on the standard datasets OTB2013.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1129 ◽  
Author(s):  
Jianming Zhang ◽  
Yang Liu ◽  
Hehua Liu ◽  
Jin Wang

Visual object tracking is a significant technology for camera-based sensor networks applications. Multilayer convolutional features comprehensively used in correlation filter (CF)-based tracking algorithms have achieved excellent performance. However, there are tracking failures in some challenging situations because ordinary features are not able to well represent the object appearance variations and the correlation filters are updated irrationally. In this paper, we propose a local–global multiple correlation filters (LGCF) tracking algorithm for edge computing systems capturing moving targets, such as vehicles and pedestrians. First, we construct a global correlation filter model with deep convolutional features, and choose horizontal or vertical division according to the aspect ratio to build two local filters with hand-crafted features. Then, we propose a local–global collaborative strategy to exchange information between local and global correlation filters. This strategy can avoid the wrong learning of the object appearance model. Finally, we propose a time-space peak to sidelobe ratio (TSPSR) to evaluate the stability of the current CF. When the estimated results of the current CF are not reliable, the Kalman filter redetection (KFR) model would be enabled to recapture the object. The experimental results show that our presented algorithm achieves better performances on OTB-2013 and OTB-2015 compared with the other latest 12 tracking algorithms. Moreover, our algorithm handles various challenges in object tracking well.


Sign in / Sign up

Export Citation Format

Share Document