Investigation of the Convergence Domain of the Backpropagation Algorithm for Training the Perceptron in Pattern Recognition in the Problems of Technospheric Safety of Transport Systems

Author(s):  
A. N. Yakubovich ◽  
I. A. Yakubovich ◽  
Yu. V. Trofimenko
Author(s):  
Rima Liana Gema ◽  
Devia Kartika

One method used in Artificial Neural Networks is a backpropagation algorithm that is widely used in predicting and pattern recognition. Songket is one of the works of skilled hands of the original Silungkang craftsmen, Sawahlunto City, West Sumatra who have varied and unique patterns and motifs. This study uses a back propagation algorithm to find the best training pattern to facilitate the determination of the production prediction of Silungkang songket business using the Matlab application. The best training patterns obtained are expected to be used in data processing at the testing stage in order to obtain predictions for the production of songket business for the future. Keywords: production, songket, back propagation.


Author(s):  
P. Anil Kumar ◽  
B. Anuradha

<p class="Abstract">Pattern recognition has been acknowledged as one of the promising research areas and it has drawn the awareness among many researchers since its existence at the beginning of the nineties. Multilayer Neural networks are used in pattern Recognition and classification based on the features derived from the input patterns. The Reflectivity information extracted from the Doppler Weather Radar (DWR) image helps in identifying the convective cloud type which has a strong relation to the precipitation rate. The reflectivity information is rooted in the DWR image with the help of colors and color bar is provided to distinguish among different reflectivity information. Artificial Neural network predicts the color based on the maximum likelihood estimation problem. This paper presents a best possible backpropagation algorithm for color identification in DWR images by comparing various backpropagation algorithms such as LevenbergMarquardt, Conjugate gradient, and Resilient back propagation etc.,. Pattern recognition using Neural networks presents better results compared to standard distance measures. It is observed that Levenberg-Marquardt backpropagation algorithm yields a regression value of 99% approximately and accuracy of 98%</p>


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
L. Fei ◽  
P. Fraundorf

Interface structure is of major interest in microscopy. With high resolution transmission electron microscopes (TEMs) and scanning probe microscopes, it is possible to reveal structure of interfaces in unit cells, in some cases with atomic resolution. A. Ourmazd et al. proposed quantifying such observations by using vector pattern recognition to map chemical composition changes across the interface in TEM images with unit cell resolution. The sensitivity of the mapping process, however, is limited by the repeatability of unit cell images of perfect crystal, and hence by the amount of delocalized noise, e.g. due to ion milling or beam radiation damage. Bayesian removal of noise, based on statistical inference, can be used to reduce the amount of non-periodic noise in images after acquisition. The basic principle of Bayesian phase-model background subtraction, according to our previous study, is that the optimum (rms error minimizing strategy) Fourier phases of the noise can be obtained provided the amplitudes of the noise is given, while the noise amplitude can often be estimated from the image itself.


1989 ◽  
Vol 34 (11) ◽  
pp. 988-989
Author(s):  
Erwin M. Segal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document