Mining Three-Dimensional Anthropometric Body Surface Scanning Data for Hypertension Detection

2007 ◽  
Vol 11 (3) ◽  
pp. 264-273 ◽  
Author(s):  
Chaochang Chiu ◽  
Kuang-Hung Hsu ◽  
Pei-Lun Hsu ◽  
Chi-I Hsu ◽  
Po-Chi Lee ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Kuo Ting ◽  
Pei-Ju Liao ◽  
I-Wen Wu ◽  
Shuo-Wei Chen ◽  
Ning-I Yang ◽  
...  

Background. An accurate and comprehensive anthropometric measure for predicting type 2 diabetes mellitus (T2DM) has not yet been depicted. Methods. A total of 8450 nondiabetic participants were recruited during 2000–2010 in Taiwan. The cohort was followed up to the end of 2013, over an average of 8.87 years. At recruitment, participants completed a questionnaire related to basic demographics, lifestyle variables, personal disease history, and family disease history. 3D body surface scanning was used to obtain 35 anatomical measurements. A Cox proportional hazard model was used to conduct multivariable analyses. Results. A total of 2068 T2DM cases at an incidence rate of 27.59 × 10−3 (year−1) were identified during the follow-up period. Multivariable-adjusted hazard ratios (HRs) demonstrated that neck circumference (NC) (HR = 1.048; 95% CI = 1.033–1.064), waist width (WW) (HR = 1.061; 95% CI = 1.040–1.081), and left thigh circumference (TC) (HR = 0.984; 95% CI = 0.972–0.995) were significant predictors of the occurrence of T2DM. While dividing body measurement into median high/low groups, an increased risk of T2DM was observed among participants with a larger NC and smaller TC (HR = 1.375; 95% CI = 1.180–1.601) and a larger WW and smaller TC (HR = 1.278; 95% CI = 1.085–1.505) relative to other participants. Conclusions. This study suggests that as well as using traditional waist and TC measurements, NC can be used as an indicator to provide an early prediction of developing T2DM, while providing clues for future mechanistic investigations of T2DM.


Author(s):  
Nicolas Boisset ◽  
Jean-Christophe Taveau ◽  
Jean Lamy ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
...  

Hemocyanin, the respiratory pigment of the scorpion Androctonus australis is composed of 24 kidney shaped subunits. A model of architecture supported by many indirect arguments has been deduced from electron microscopy (EM) and immuno-EM. To ascertain, the disposition of the subunits within the oligomer, the 24mer was submitted to three-dimensional reconstruction by the method of single-exposure random-conical tilt series.A sample of native hemocyanin, prepared with the double layer negative staining technique, was observed by transmisson electron microscopy under low-dose conditions. Six 3D-reconstructions were carried out indenpendently from top, side and 45°views. The results are composed of solid-body surface representations, and slices extracted from the reconstruction volume.The main two characters of the molecule previously reported by Van Heel and Frank, were constantly found in the solid-body surface representations. These features are the presence of two different faces called flip and flop and a rocking of the molecule around an axis passing through diagonnally opposed hexamers. Furthermore, in the solid-body surface of the top view reconstruction, the positions and orientations of the bridges connecting the half molecules were found in excellent agreement with those predicted by the model.


2005 ◽  
Vol 289 (6) ◽  
pp. H2724-H2732 ◽  
Author(s):  
Xin Zhang ◽  
Indiresha Ramachandra ◽  
Zhongming Liu ◽  
Basharat Muneer ◽  
Steven M. Pogwizd ◽  
...  

Imaging the myocardial activation sequence is critical for improved diagnosis and treatment of life-threatening cardiac arrhythmias. It is desirable to reveal the underlying cardiac electrical activity throughout the three-dimensional (3-D) myocardium (rather than just the endocardial or epicardial surface) from noninvasive body surface potential measurements. A new 3-D electrocardiographic imaging technique (3-DEIT) based on the boundary element method (BEM) and multiobjective nonlinear optimization has been applied to reconstruct the cardiac activation sequences from body surface potential maps. Ultrafast computerized tomography scanning was performed for subsequent construction of the torso and heart models. Experimental studies were then conducted, during left and right ventricular pacing, in which noninvasive assessment of ventricular activation sequence by means of 3-DEIT was performed simultaneously with 3-D intracardiac mapping (up to 200 intramural sites) using specially designed plunge-needle electrodes in closed-chest rabbits. Estimated activation sequences from 3-DEIT were in good agreement with those constructed from simultaneously recorded intracardiac electrograms in the same animals. Averaged over 100 paced beats (from a total of 10 pacing sites), total activation times were comparable (53.3 ± 8.1 vs. 49.8 ± 5.2 ms), the localization error of site of initiation of activation was 5.73 ± 1.77 mm, and the relative error between the estimated and measured activation sequences was 0.32 ± 0.06. The present experimental results demonstrate that the 3-D paced ventricular activation sequence can be reconstructed by using noninvasive multisite body surface electrocardiographic measurements and imaging of heart-torso geometry. This new 3-D electrocardiographic imaging modality has the potential to guide catheter-based ablative interventions for the treatment of life-threatening cardiac arrhythmias.


2018 ◽  
Vol 51 (1) ◽  
pp. 60-67 ◽  
Author(s):  
Erick A. Perez-Alday ◽  
Jason A. Thomas ◽  
Muammar Kabir ◽  
Golriz Sedaghat ◽  
Nichole Rogovoy ◽  
...  

2003 ◽  
Vol 14 (4) ◽  
pp. 449-456 ◽  
Author(s):  
Adriana C. Da Silveira ◽  
Joseph L. Daw, ◽  
Budi Kusnoto ◽  
Carla Evans ◽  
Mimis Cohen

2018 ◽  
Vol 6 ◽  
Author(s):  
A. K. W. Cheah ◽  
T. Kangkorn ◽  
E. H. Tan ◽  
M. L. Loo ◽  
S. J. Chong

Abstract Background Accurate total body surface area burned (TBSAB) estimation is a crucial aspect of early burn management. It helps guide resuscitation and is essential in the calculation of fluid requirements. Conventional methods of estimation can often lead to large discrepancies in burn percentage estimation. We aim to compare a new method of TBSAB estimation using a three-dimensional smart-phone application named 3D Burn Resuscitation (3D Burn) against conventional methods of estimation—Rule of Palm, Rule of Nines and the Lund and Browder chart. Methods Three volunteer subjects were moulaged with simulated burn injuries of 25%, 30% and 35% total body surface area (TBSA), respectively. Various healthcare workers were invited to use both the 3D Burn application as well as the conventional methods stated above to estimate the volunteer subjects’ burn percentages. Results Collective relative estimations across the groups showed that when used, the Rule of Palm, Rule of Nines and the Lund and Browder chart all over-estimated burns area by an average of 10.6%, 19.7%, and 8.3% TBSA, respectively, while the 3D Burn application under-estimated burns by an average of 1.9%. There was a statistically significant difference between the 3D Burn application estimations versus all three other modalities (p < 0.05). Time of using the application was found to be significantly longer than traditional methods of estimation. Conclusions The 3D Burn application, although slower, allowed more accurate TBSAB measurements when compared to conventional methods. The validation study has shown that the 3D Burn application is useful in improving the accuracy of TBSAB measurement. Further studies are warranted, and there are plans to repeat the above study in a different centre overseas as part of a multi-centre study, with a view of progressing to a prospective study that compares the accuracy of the 3D Burn application against conventional methods on actual burn patients.


Author(s):  
Michael Alfertshofer ◽  
Konstantin Frank ◽  
Dmitry V. Melnikov ◽  
Nicholas Möllhoff ◽  
Robert H. Gotkin ◽  
...  

AbstractFacial flap surgery depends strongly on thorough preoperative planning and precise surgical performance. To increase the dimensional accuracy of transferred facial flaps, the methods of ultrasound and three-dimensional (3D) surface scanning offer great possibilities. This study aimed to compare different methods of measuring distances in the facial region and where they can be used reliably. The study population consisted of 20 volunteers (10 males and 10 females) with a mean age of 26.7 ± 7.2 years and a mean body mass index of 22.6 ± 2.2 kg/m2. Adhesives with a standardized length of 20 mm were measured in various facial regions through ultrasound and 3D surface scans, and the results were compared. Regardless of the facial region, the mean length measured through ultrasound was 18.83 mm, whereas it was 19.89 mm for 3D surface scans, with both p < 0.0001. Thus, the mean difference was 1.17 mm for ultrasound measurements and 0.11 mm for 3D surface scans. Curved facial regions show a great complexity when it comes to measuring distances due to the concavity and convexity of the face. Distance measurements through 3D surface scanning showed more accurate distances than the ultrasound measurement. Especially in “complex” facial regions (e.g., glabella region and labiomental sulcus), the 3D surface scanning showed clear advantages.


Sign in / Sign up

Export Citation Format

Share Document