Multi-Component Layout Optimization Method for the Design of a Permanent Magnet Actuator

2016 ◽  
Vol 52 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Sunghoon Lim ◽  
Seungmin Jeong ◽  
Seungjae Min
Author(s):  
Zhi-Zheng Xu ◽  
Chong-Quan Zhong ◽  
Hong-Fei Teng

Previous studies of satellite module component (equipment) layout optimization usually initialized a component assignment in the initialization stage, which kept constant in following optimization process. The invariable component assignment will restrict the further improvement in layout optimization. To overcome this deficiency, an assignment and layout integration optimization method is presented for multi-module or supporting surface satellite module component layout design. The assignment and layout integration optimization model and the component reassignment model are built. The component reassignment model is solved by algorithms with new heuristic rule, and the integration optimization model itself is solved by evolutionary algorithm. The purpose of this article is to improve the computational performance of algorithms for multi-module or supporting surface satellite module component layout optimization. The proposed method is applied to a simplified satellite re-entry module component layout optimization problem to illustrate its effectiveness.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 494
Author(s):  
Ekaterina Andriushchenko ◽  
Ants Kallaste ◽  
Anouar Belahcen ◽  
Toomas Vaimann ◽  
Anton Rassõlkin ◽  
...  

In recent decades, the genetic algorithm (GA) has been extensively used in the design optimization of electromagnetic devices. Despite the great merits possessed by the GA, its processing procedure is highly time-consuming. On the contrary, the widely applied Taguchi optimization method is faster with comparable effectiveness in certain optimization problems. This study explores the abilities of both methods within the optimization of a permanent magnet coupling, where the optimization objectives are the minimization of coupling volume and maximization of transmitted torque. The optimal geometry of the coupling and the obtained characteristics achieved by both methods are nearly identical. The magnetic torque density is enhanced by more than 20%, while the volume is reduced by 17%. Yet, the Taguchi method is found to be more time-efficient and effective within the considered optimization problem. Thanks to the additive manufacturing techniques, the initial design and the sophisticated geometry of the Taguchi optimal designs are precisely fabricated. The performances of the coupling designs are validated using an experimental setup.


1997 ◽  
Vol 81 (8) ◽  
pp. 4266-4268 ◽  
Author(s):  
J. Wang ◽  
G. W. Jewell ◽  
D. Howe

Energies ◽  
2016 ◽  
Vol 9 (12) ◽  
pp. 992 ◽  
Author(s):  
Juncai Song ◽  
Fei Dong ◽  
Jiwen Zhao ◽  
Siliang Lu ◽  
Le Li ◽  
...  

2019 ◽  
Vol 28 ◽  
pp. 01020
Author(s):  
Łukasz Knypiński

The paper presents an algorithm and computer software for the optimization of electromagnetic devices. The mathematical model of the optimization method was presented. The modification of the classical grey wolf algorithm was developed. The modification consists in decreasing the coefficient responsible for the possibility of migration individuals in the permissible area of solved task. The optimization procedure was elaborated in the Borland Delphi environment. The optimization of the rotor of the line-start permanent magnet synchronous motor has been carried out. It has been pointed out that the grey wolf algorithm is effective method for optimization of electromagnetic devices.


2008 ◽  
Vol 44 (1) ◽  
pp. 77-85 ◽  
Author(s):  
G. Krebs ◽  
A. Tounzi ◽  
B. Pauwels ◽  
D. Willemot ◽  
M. F. Piriou

Sign in / Sign up

Export Citation Format

Share Document