Analysis and Design of Dual Three-phase Fractional-slot Permanent Magnet Motor with Low Space Harmonic

2021 ◽  
pp. 1-1
Author(s):  
Liyan Guo ◽  
Jiaqi Xu ◽  
Shuang Wu ◽  
Ximing Xie ◽  
Huimin Wang
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2533 ◽  
Author(s):  
Zheng Li ◽  
Xuze Yu ◽  
Zengtao Xue ◽  
Hexu Sun

This paper proposes a novel layered permanent magnet motor (N-LPM), which is based on a three-degree-of-freedom (3-DOF) permanent magnet motor. Compared with the former, the improved N-LPM air gap magnetic density, torque and structure stability have been significantly improved. The proposed N-LPM has three layers of stator along the axis direction, and each layer of stator has three-phase winding. In order to calculate the magnetic field and torque distribution of the N-LPM, an analytical method (AM) is proposed. For performance verification and accurate calculation, finite-element analysis (FEA) is adopted. The two kinds of motors before and after the improvement are compared, and their magnetic field, torque and stability are analyzed. The optimization rate is defined to evaluate the performance of the motor before and after improvement. The results show that the radial flux density, rotation torque, deflection torque and the volume optimization rate of the permanent magnet of the improved motor are 80%, 25%, 50% and 54.72% respectively, and the comprehensive performance is improved significantly.


Author(s):  
Cezary Jedryczka ◽  
Wojciech Szelag ◽  
Zbigniew Jerry Piech

Purpose The purpose of this paper is to investigate advantages of multiphase permanent magnet synchronous motors (PMSM) with fractional slot concentrated windings (FSCW). The investigation is based on comparative analysis and assessment of FSCW PMSM wound as 3, 6, 9 and 12 phase machines suited for low speed applications. Design/methodology/approach The investigations are focussed on distortions of back electromotive (emf) and magnetomotive force (mmf) with the torque ripples and motors’ performance taken into account. The finite element models with the aid of customized computer code have been adopted for motor winding design and back emf, mmf and motor performance analyses. Findings The novel multiphase winding layouts were found to offer lower content of sub-harmonics in the mmf waveforms compared with the traditional three-phase machine designs. Moreover, the investigated multiphase machines exhibited higher average value of the electromagnetic torque, while the multiphase PMSM machines with FSCW were further characterized by significantly lower torque pulsations. Originality/value The analyses presented in this paper demonstrate that PMSM with FSCW are advantageous to their counterpart three-phase machines. Specifically, they offer higher performance and are more suitable to work with multiple drives supplying segmented winding system. This ability of using multi-drive supply for one motor offers flexibility and cost reduction while increasing fault tolerant power train system.


Sign in / Sign up

Export Citation Format

Share Document