Fast Dynamic Multiple-Set Membership Testing Using Combinatorial Bloom Filters

2012 ◽  
Vol 20 (1) ◽  
pp. 295-304 ◽  
Author(s):  
Fang Hao ◽  
Murali Kodialam ◽  
T. V. Lakshman ◽  
Haoyu Song
2020 ◽  
Author(s):  
Enrico Seiler ◽  
Svenja Mehringer ◽  
Mitra Darvish ◽  
Etienne Turc ◽  
Knut Reinert

AbstractWe present Raptor, a tool for approximately searching many queries in large collections of nucleotide sequences. In comparison with similar tools like Mantis and COBS, Raptor is 12-144 times faster and uses up to 30 times less memory. Raptor uses winnowing minimizers to define a set of representative k-mers, an extension of the Interleaved Bloom Filters (IBF) as a set membership data structure, and probabilistic thresholding for minimizers. Our approach allows compression and a partitioning of the IBF to enable the effective use of secondary memory.


2016 ◽  
Vol 44 (1) ◽  
pp. 139-151 ◽  
Author(s):  
Haipeng Dai ◽  
Yuankun Zhong ◽  
Alex X. Liu ◽  
Wei Wang ◽  
Meng Li
Keyword(s):  

2016 ◽  
Vol 24 (6) ◽  
pp. 3326-3339 ◽  
Author(s):  
Yan Qiao ◽  
Shigang Chen ◽  
Zhen Mo ◽  
Myungkeun Yoon

Author(s):  
Kristopher D. Staller ◽  
Corey Goodrich

Abstract Soft Defect Localization (SDL) is a dynamic laser-based failure analysis technique that can detect circuit upsets (or cause a malfunctioning circuit to recover) by generation of localized heat or photons from a rastered laser beam. SDL is the third and seldom used method on the LSM tool. Most failure analysis LSM sessions use the endo-thermic mode (TIVA, XIVA, OBIRCH), followed by the photo-injection mode (LIVA) to isolate most of their failures. SDL is seldom used or attempted, unless there is a unique and obvious failure mode that can benefit from the application. Many failure analysts, with a creative approach to the analysis, can employ SDL. They will benefit by rapidly finding the location of the failure mechanism and forgoing weeks of nodal probing and isolation. This paper will cover circuit signal conditioning to allow for fast dynamic failure isolation using an LSM for laser stimulation. Discussions of several cases will demonstrate how the laser can be employed for triggering across a pass/fail boundary as defined by voltage levels, supply currents, signal frequency, or digital flags. A technique for manual input of the LSM trigger is also discussed.


2011 ◽  
Author(s):  
M. A. Green ◽  
C. R. Kaplan ◽  
J. P. Boris ◽  
E. S. Oran

2018 ◽  
pp. 47-53
Author(s):  
B. Z. Shmeylin ◽  
E. A. Alekseeva

In this paper the tasks of managing the directory in coherence maintenance systems in multiprocessor systems with a large number of processors are solved. In microprocessor systems with a large number of processors (MSLP) the problem of maintaining the coherence of processor caches is significantly complicated. This is due to increased traffic on the memory buses and increased complexity of interprocessor communications. This problem is solved in various ways. In this paper, we propose the use of Bloom filters used to accelerate the determination of an element’s belonging to a certain array. In this article, such filters are used to establish the fact that the processor belongs to some subset of the processors and determine if the processor has a cache line in the set. In the paper, the processes of writing and reading information in the data shared between processors are discussed in detail, as well as the process of data replacement from private caches. The article also shows how the addresses of cache lines and processor numbers are removed from the Bloom filters. The system proposed in this paper allows significantly speeding up the implementation of operations to maintain cache coherence in the MSLP as compared to conventional systems. In terms of performance and additional hardware and software costs, the proposed system is not inferior to the most efficient of similar systems, but on some applications and significantly exceeds them.


2016 ◽  
Vol 26 (4) ◽  
pp. 803-813 ◽  
Author(s):  
Carine Jauberthie ◽  
Louise Travé-MassuyèEs ◽  
Nathalie Verdière

Abstract Identifiability guarantees that the mathematical model of a dynamic system is well defined in the sense that it maps unambiguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework and relates recently introduced properties, namely, SM-identifiability, μ-SM-identifiability, and ε-SM-identifiability, to the properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and comparing SM-identifiability, μ-SM-identifiability and ε-SM-identifiability with related properties found in the literature, and by providing a method based on differential algebra to check these properties.


Sign in / Sign up

Export Citation Format

Share Document