scholarly journals Global Nonlinear Kernel Prediction for Large Data Set With a Particle Swarm-Optimized Interval Support Vector Regression

2015 ◽  
Vol 26 (10) ◽  
pp. 2521-2534 ◽  
Author(s):  
Yongsheng Ding ◽  
Lijun Cheng ◽  
Witold Pedrycz ◽  
Kuangrong Hao
2008 ◽  
Vol 07 (04) ◽  
pp. 721-736 ◽  
Author(s):  
HSIAO-FAN WANG ◽  
ZU-WEN CHAN

In this study, we proposed a general pruning procedure to reduce the dimension of a large database so that the properties of the extracted subset can be well defined. Since learning functions have been widely applied, we take this group of functions as an example to demonstrate the proposed procedure. Based on the concept of Support Vector Machine (SVM), three major stages of preliminary pruning, fitting function, and refining are proposed to discover a subset that possess the characteristics of some learning function from the given large data set. Three models were used to illustrate and evaluate the proposed pruning procedure and the results have shown to be promising in application.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Hsiou-Hsiang Liu ◽  
Lung-Cheng Chang ◽  
Chien-Wei Li ◽  
Cheng-Hong Yang

The tourism industry has become one of the most important economic sectors for governments worldwide. Accurately forecasting tourism demand is crucial because it provides useful information to related industries and governments, enabling stakeholders to adjust plans and policies. To develop a forecasting tool for the tourism industry, this study proposes a method that combines feature selection (FS) and support vector regression (SVR) with particle swarm optimization (PSO), named FS–PSOSVR. To ensure high forecast accuracy, FS and a PSO algorithm are employed to, respectively, select reliable input variables and to identify the optimal initial parameters of SVR. The proposed method was tested using a data set of monthly tourist arrivals to Taiwan from January 2006 to December 2016. The results reveal that the errors obtained using FS–PSOSVR are comparatively smaller than those obtained using other methods, indicating that FS–PSOSVR is an effective method for forecasting tourism demand.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruolan Zeng ◽  
Jiyong Deng ◽  
Limin Dang ◽  
Xinliang Yu

AbstractA three-descriptor quantitative structure–activity/toxicity relationship (QSAR/QSTR) model was developed for the skin permeability of a sufficiently large data set consisting of 274 compounds, by applying support vector machine (SVM) together with genetic algorithm. The optimal SVM model possesses the coefficient of determination R2 of 0.946 and root mean square (rms) error of 0.253 for the training set of 139 compounds; and a R2 of 0.872 and rms of 0.302 for the test set of 135 compounds. Compared with other models reported in the literature, our SVM model shows better statistical performance in a model that deals with more samples in the test set. Therefore, applying a SVM algorithm to develop a nonlinear QSAR model for skin permeability was achieved.


2021 ◽  
pp. 102586
Author(s):  
Chuanjun Du ◽  
Ruoying He ◽  
Zhiyu Liu ◽  
Tao Huang ◽  
Lifang Wang ◽  
...  

2017 ◽  
Vol 128 (1) ◽  
pp. 243-250 ◽  
Author(s):  
Mark L. Scheuer ◽  
Anto Bagic ◽  
Scott B. Wilson

Sign in / Sign up

Export Citation Format

Share Document