Calorimeter Response Deconvolution for Energy Estimation in High-Luminosity Conditions

2015 ◽  
Vol 62 (6) ◽  
pp. 3265-3273 ◽  
Author(s):  
Luciano M. de A. Filho ◽  
Bernardo S. Peralva ◽  
Jose M. de Seixas ◽  
Augusto S. Cerqueira
Author(s):  
Richard Wigmans

This chapter deals with the signals produced by particles that are being absorbed in a calorimeter. The calorimeter response is defined as the average signal produced per unit energy deposited in this absorption process, for example in terms of picoCoulombs per GeV. Defined in this way, a linear calorimeter has a constant response. Typically, the response of the calorimeter depends on the type of particle absorbed in it. Also, most calorimeters are non-linear for hadronic shower detection. This is the essence of the so-called non-compensation problem, which has in practice major consequences for the performance of calorimeters. The origins of this problem, and its possible solutions are described. The roles of the sampling fraction, the sampling frequency, the signal integration time and the choice of the absorber and active materials are examined in detail. Important parameters, such as the e/mip and e/h values, are defined and methods to determine their value are described.


1999 ◽  
Vol 524 (1) ◽  
pp. 379-393 ◽  
Author(s):  
Nancy Remage Evans ◽  
Kenneth Carpenter ◽  
Richard Robinson ◽  
Derck Massa ◽  
Glenn M. Wahlgren ◽  
...  
Keyword(s):  

Author(s):  
S. A. Antipov ◽  
N. Biancacci ◽  
J. Komppula ◽  
E. Métral ◽  
B. Salvant ◽  
...  

2020 ◽  
Vol 153 (24) ◽  
pp. 244119
Author(s):  
Steven Blaber ◽  
David A. Sivak

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
X. Y. Liu ◽  
W. W. Wang ◽  
S. T. Xie ◽  
Q. W. Pan

AbstractFreshwater scarcity is a global threat to modern era of human society. Sorption-based atmospheric water harvesting (AWH) is prospective to provide fresh water for remote water-stressed areas lacking in water and electricity. Adsorbent material plays a vital role in such AWH systems. Here, we report a solid adsorbent synthesized by impregnating hygroscopic salt lithium chloride (LiCl) into solidified activated carbon fiber felt (ACFF modified by silica sol). Composite samples immersed with different mass concentrations of silica sol are prepared and characterized for dynamic water uptake, equilibrium water uptake, textural and thermal properties. AS5Li30 (ACFF + 5 wt% silica gel + 30 wt% LiCl) exhibits an efficient water uptake of 2.1 g/g at 25 °C and 70% relative humidity (RH). The material further demonstrates a heat storage capacity of 5456 kJ/kg. Its low regeneration temperature (< 80 °C) and good cycle stability make it feasible to be used in practical water production applications, driven by solar energy and other low-grade energy. Estimation results show that water harvesting unit can produce 1.41 gH2O/gAS5Li30 under 25 °C and 75% RH.


Sign in / Sign up

Export Citation Format

Share Document