scholarly journals Evolution studies of the CMS endcap calorimeter response and implications for the High-Luminosity LHC upgrade

2015 ◽  
Author(s):  
Michael Planer
2015 ◽  
Vol 62 (6) ◽  
pp. 3265-3273 ◽  
Author(s):  
Luciano M. de A. Filho ◽  
Bernardo S. Peralva ◽  
Jose M. de Seixas ◽  
Augusto S. Cerqueira

Author(s):  
Richard Wigmans

This chapter deals with the signals produced by particles that are being absorbed in a calorimeter. The calorimeter response is defined as the average signal produced per unit energy deposited in this absorption process, for example in terms of picoCoulombs per GeV. Defined in this way, a linear calorimeter has a constant response. Typically, the response of the calorimeter depends on the type of particle absorbed in it. Also, most calorimeters are non-linear for hadronic shower detection. This is the essence of the so-called non-compensation problem, which has in practice major consequences for the performance of calorimeters. The origins of this problem, and its possible solutions are described. The roles of the sampling fraction, the sampling frequency, the signal integration time and the choice of the absorber and active materials are examined in detail. Important parameters, such as the e/mip and e/h values, are defined and methods to determine their value are described.


1999 ◽  
Vol 524 (1) ◽  
pp. 379-393 ◽  
Author(s):  
Nancy Remage Evans ◽  
Kenneth Carpenter ◽  
Richard Robinson ◽  
Derck Massa ◽  
Glenn M. Wahlgren ◽  
...  
Keyword(s):  

Author(s):  
S. A. Antipov ◽  
N. Biancacci ◽  
J. Komppula ◽  
E. Métral ◽  
B. Salvant ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4722
Author(s):  
Botan Wang ◽  
Xiaolong Chen ◽  
Yi Wang ◽  
Dong Han ◽  
Baohong Guo ◽  
...  

This work reports the latest observations on the behavior of two Multigap Resistive Plate Chambers (MRPC) under wide high-luminosity exposures, which motivate the development and in-beam test of the sealed MRPC prototype assembled with low-resistive glass. The operation currently being monitored, together with previous simulation results, shows the impact of gas pollution caused by avalanches in gas gaps, and the necessity to shrink the gas-streaming volume. With the lateral edge of the detector sealed by a 3D-printed frame, a reduced gas-streaming volume of ~170 mL has been achieved for a direct gas flow to the active area. A high-rate test of the sealed MRPC prototype shows that, ensuring a 97% efficiency and 70 ps time resolution, the sealed design results in a stable operation current behavior at a counting rate of 3–5 kHz/cm2. The sealed MRPC will become a potential solution for future high luminosity applications.


1983 ◽  
Vol 6 ◽  
pp. 648-648
Author(s):  
J.B. Hutchings

IUE has been used to study 11 high luminosity X-ray binaries, of which 3 are in the Magellanic Clouds. In the supergiant systems, X-ray ionisation bubbles have been found in most cases, leading to a greater understanding of the winds and accretion processes. Further studies of precessing objects such as LMC X-4 with IUE and ST are clearly of considerable interest, relating to X-ray heating and blanketing. Detailed studies of the Cyg X-l ionisation bubble may resolve the long standing puzzle of its orbit inclination and masses. UV continua have furnished valuable information on extinction, temperatures and luminosities, and the presence of non-stellar (i.e. disk) luminosity. Here too, more detailed studies are clearly indicated for the future. A unique object of interest is the LMC transient 0538-66 whose UV spectrum has quasarlike lines and luminosity which varies oppositely to the visible. This may be a case of supercritical accretion generating an optically thick shell (“disk”) about the pulsar.


1979 ◽  
Vol 83 ◽  
pp. 431-445 ◽  
Author(s):  
Peter S. Conti

The stellar wind mass loss rates of at least some single Of type stars appear to be sufficient to remove much if not all of the hydrogen-rich envelope such that nuclear processed material is observed at the surface. This highly evolved state can then be naturally associated with classic Population I WR stars that have properties of high luminosity for their mass, helium enriched composition, and nitrogen or carbon enhanced abundances. If stellar wind mass loss is the dominant process involved in this evolutionary scenario, then stars with properties intermediate between Of and WR types should exist. The stellar parameters of luminosity, temperature, mass and composition are briefly reviewed for both types. All late WN stars so far observed are relatively luminous like Of stars, and also contain hydrogen. All early WN stars, and WC stars, are relatively faint and contain little or no hydrogen. The late WN stars seem to have the intermediate properties required if a stellar wind is the dominant mass loss mechanism that transforms an Of star to a WR type.


Sign in / Sign up

Export Citation Format

Share Document