Optimal Functional-Unit Assignment for Heterogeneous Systems Under Timing Constraint

2017 ◽  
Vol 28 (9) ◽  
pp. 2567-2580 ◽  
Author(s):  
Weiwen Jiang ◽  
Edwin Hsing-Mean Sha ◽  
Xianzhang Chen ◽  
Lei Yang ◽  
Lei Zhou ◽  
...  
1998 ◽  
Vol 37 (04/05) ◽  
pp. 518-526 ◽  
Author(s):  
D. Sauquet ◽  
M.-C. Jaulent ◽  
E. Zapletal ◽  
M. Lavril ◽  
P. Degoulet

AbstractRapid development of community health information networks raises the issue of semantic interoperability between distributed and heterogeneous systems. Indeed, operational health information systems originate from heterogeneous teams of independent developers and have to cooperate in order to exchange data and services. A good cooperation is based on a good understanding of the messages exchanged between the systems. The main issue of semantic interoperability is to ensure that the exchange is not only possible but also meaningful. The main objective of this paper is to analyze semantic interoperability from a software engineering point of view. It describes the principles for the design of a semantic mediator (SM) in the framework of a distributed object manager (DOM). The mediator is itself a component that should allow the exchange of messages independently of languages and platforms. The functional architecture of such a SM is detailed. These principles have been partly applied in the context of the HEllOS object-oriented software engineering environment. The resulting service components are presented with their current state of achievement.


1970 ◽  
Author(s):  
N.V. Antonishin ◽  
S. S. Zabrodsky ◽  
L.E. Simchenko ◽  
V.V. Lushchikov

2020 ◽  
Author(s):  
Laurent Sévery ◽  
Jacek Szczerbiński ◽  
Mert Taskin ◽  
Isik Tuncay ◽  
Fernanda Brandalise Nunes ◽  
...  

The strategy of anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. The stability of molecular catalysts is, however, far less than that of traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here, we apply a non-covalent “click” chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces via host-guest complexation with surface-anchored cyclodextrins. The host-guest interaction is remarkably strong and allows the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and readsorption of fresh guest. This strategy represents a new approach to practical molecular-based catalytic systems.


Author(s):  
Robert B. Jordan

This third edition retains the general level and scope of earlier editions, but has been substantially updated with over 900 new references covering the literature through 2005, and 140 more pages of text than the previous edition. In addition to the general updating of materials, there is new or greatly expanded coverage of topics such as Curtin-Hammett conditions, pressure effects, metal hydrides and asymmetric hydrogenation catalysts, the inverted electron-transfer region, intervalence electron transfer, photochemistry of metal carbonyls, methyl transferase and nitric oxide synthase. The new chapter on heterogeneous systems introduces the basic background to this industrially important area. The emphasis is on inorganic examples of gas/liquid and gas/liquid/solid systems and methods of determining heterogeneity.


Function ◽  
2021 ◽  
Author(s):  
Bruce R Stevens ◽  
J Clive Ellory ◽  
Robert L Preston

Abstract The SARS-CoV-2 receptor, Angiotensin Converting Enzyme-2 (ACE2), is expressed at levels of greatest magnitude in the small intestine as compared to all other human tissues. Enterocyte ACE2 is co-expressed as the apical membrane trafficking partner obligatory for expression and activity of the B0AT1 sodium-dependent neutral amino acid transporter. These components are assembled as an [ACE2: B0AT1]2 dimer-of-heterodimers quaternary complex that putatively steers SARS-CoV-2 tropism in the gastrointestinal (GI) tract. GI clinical symptomology is reported in about half of COVID-19 patients, and can be accompanied by gut shedding of virion particles. We hypothesized that within this 4-mer structural complex, each [ACE2: B0AT1] heterodimer pair constitutes a physiological “functional unit.” This was confirmed experimentally by employing purified lyophilized enterocyte brush border membrane vesicles that were exposed to increasing doses of high-energy electron radiation from a 16 MeV linear accelerator. Based on established target theory, the results indicated the presence of Na+-dependent neutral amino acid influx transport activity functional unit with target size mw = 183.7 ± 16.8 kDa in situ in intact apical membranes. Each thermodynamically stabilized [ACE2: B0AT1] heterodimer functional unit manifests the transport activity within the whole ∼345 kDa [ACE2: B0AT1]2 dimer-of-heterodimers quaternary structural complex. The results are consistent with our prior molecular docking modeling and gut-lung axis approaches to understanding COVID-19. These findings advance the understanding of the physiology of B0AT1 interaction with ACE2 in the gut, and thereby potentially contribute to translational developments designed to treat or mitigate COVID-19 variant outbreaks and/or GI symptom persistence in long-haul Post-Acute Sequelae of SARS-CoV-2 (PASC).


Sign in / Sign up

Export Citation Format

Share Document