Information Geometry Approach to Verification of Dynamic Models in Power Systems

2018 ◽  
Vol 33 (1) ◽  
pp. 440-450 ◽  
Author(s):  
Mark K. Transtrum ◽  
Andrija T. Saric ◽  
Aleksandar M. Stankovic
Author(s):  
Jianqiang Luo ◽  
Yiqing Zou ◽  
Siqi Bu

Various renewable energy sources such as wind power and photovoltaic (PV) have been increasingly integrated into the power system through power electronic converters in recent years. However, power electronic converter-driven stability issues under specific circumstances, for instance, modal resonances might deteriorate the dynamic performance of the power systems or even threaten the overall stability. In this paper, the integration impact of a hybrid renewable energy source (HRES) system on modal interaction and converter-driven stability is investigated in an IEEE 16-machine 68-bus power system. Firstly, an HRES system is introduced, which consists of full converter-based wind power generation (FCWG) and full converter-based photovoltaic generation (FCPV). The equivalent dynamic models of FCWG and FCPV are then established, followed by the linearized state-space modeling. On this basis, converter-driven stability analyses are performed to reveal the modal resonance mechanisms of the interconnected power systems and the modal interaction phenomenon. Additionally, time-domain simulations are conducted to verify effectiveness of dynamic models and support the converter-driven stability analysis results. To avoid detrimental modal resonances, an optimization strategy is further proposed by retuning the controller parameters of the HRES system. The overall results demonstrate the modal interaction effect between external AC power system and the HRES system and its various impacts on converter-driven stability.


2020 ◽  
Author(s):  
Urmila Agrawal ◽  
Pavel Etingov ◽  
Renke Huang

<pre>High quality generator dynamic models are critical to reliable and accurate power systems studies and planning. With the availability of PMU measurements, measurement-based approach for model validation has gained significant prominence. Currently, the model validation results are analyzed by visually comparing real--world PMU measurements with the model-based response measurements, and parameter adjustments rely mostly on engineering experience. This paper proposes advanced performance metrics to systematically quantify the generator dynamic model validation results by separately taking into consideration slow governor response and comparatively fast oscillatory response. The performance metric for governor response is based on the step response characteristics of a system and the metric for oscillatory response is based on the response of generator to each system mode calculated using modal analysis. The proposed metrics in this paper is aimed at providing critical information to help with the selection of parameters to be tuned for model calibration by performing enhanced sensitivity analysis, and also help with rule-based model calibration. Results obtained using both simulated and real-world measurements validate the effectiveness of the proposed performance metrics and sensitivity analysis for model validation and calibration.</pre>


Author(s):  
Clifford C. Youn ◽  
Andrija T. Saric ◽  
Mark K. Transtrum ◽  
Aleksandar M. Stankovic

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3039 ◽  
Author(s):  
Andrés Honrubia-Escribano ◽  
Francisco Jiménez-Buendía ◽  
Jorge Luis Sosa-Avendaño ◽  
Pascal Gartmann ◽  
Sebastian Frahm ◽  
...  

The participation of wind power in the energy mix of current power systems is progressively increasing, with variable-speed wind turbines being the leading technology in recent years. In this line, dynamic models of wind turbines able to emulate their response against grid disturbances, such as voltage dips, are required. To address this issue, the International Electronic Commission (IEC) 61400-27-1, published in 2015, defined four generic models of wind turbines for transient stability analysis. To achieve a widespread use of these generic wind turbine models, validations with field data are required. This paper performs the validation of three generic IEC 61400-27-1 variable-speed wind turbine model topologies (type 3A, type 3B and type 4A). The validation is implemented by comparing simulation results with voltage dip measurements performed on six different commercial wind turbines based on field campaigns conducted by three wind turbine manufacturers. Both IEC validation approaches, the play-back and the full system simulation, were implemented. The results show that the generic full-scale converter topology is accurately adjusted to the different real wind turbines and, hence, manufacturers are encouraged to the develop generic IEC models.


Author(s):  
Francesco Casella ◽  
Tiemo Mathijssen ◽  
Piero Colonna ◽  
Jos van Buijtenen

New promising applications of organic Rankine cycle (ORC) technology, e.g., concentrated solar power, automotive heat recovery and off-grid distributed electricity generation, demand for more dynamic operation of ORC systems. Accurate physically-based dynamic modeling plays an important role in the development of such systems, both during the preliminary design as an aid for configuration and equipment selection, and for control design and optimization purposes. A software library of modular reusable dynamic models of ORC components has been developed in the MODELICA language and is documented in the paper. The model of an exemplary ORC system, namely the 150 kWe Tri-O-Gen ORC turbogenerator is validated using few carefully conceived experiments. The simulations are able to reproduce steady-state and dynamic measurements of key variables, both in nominal and in off-design operating conditions. The validation of the library opens doors to control-related studies, and to the development of more challenging dynamic applications of ORC power plants.


2014 ◽  
Vol 494-495 ◽  
pp. 229-233 ◽  
Author(s):  
Hong Wang ◽  
Feng Chun Sun

Hybrid power systems provide high-performances and high-efficiency power for electric bulldozer. This paper firstly constructs the mathematical model of driving motors system based on the design of dual-motor-driving propulsion system for bulldozer. Secondly, by using the setting values from a bulldozer, simulation work is implemented, and parameters of the hybrid power system are matched, and finally, based on MATLAB/Simulink ,dynamic models for the dual-motor-driving hybrid power system is established, and the simulation results are discussed. Simulation results demonstrate the validity of the hybrid power system model and the matching of the parameters of the hybrid power system is reasonable.


2020 ◽  
Author(s):  
Urmila Agrawal ◽  
Pavel Etingov ◽  
Renke Huang

<div>High quality generator dynamic models are critical to reliable and accurate power systems studies and planning. With the availability of PMU measurements, measurement-based approach for model validation has gained significant prominence. Currently, the model validation results are analyzed by visually comparing real–world PMU measurements with the model-based simulated data. This paper proposes metrics to quantify the generator dynamic model validation results based on the response of generators to each system mode, which includes both local and inter-area, using modal analysis approach. The metrics provide information on the inaccuracy associated with the model in terms of the characteristics of each mode. Initial results obtained using the real-world data validates the effectiveness of the proposed metrics. In this paper, modal analysis was carried out using Prony method.</div>


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5605
Author(s):  
Roghieh Abdollahi Biroon ◽  
Pierluigi Pisu ◽  
David Schoenwald

The increasing penetration of renewable energy sources in power grids highlights the role of battery energy storage systems (BESSs) in enhancing the stability and reliability of electricity. A key challenge with the renewables’, specially the BESSs, integration into the power system is the lack of proper dynamic models and their application in power system analyses. The control design strategy mainly depends on the system dynamics which underlines the importance of the system accurate dynamic modeling. Moreover, control design for the power system is a complicated issue due to its complexity and inter-connectivity, which makes the application of distributed control to improve the stability of a large-scale power system inevitable. This paper presents an optimal distributed control design for the interconnected systems to suppress the effects of small disturbances in the power system employing utility-scale batteries based on existing battery models. The control strategy is applied to two dynamic models of the battery: hybrid model and Western electricity coordinating council (WECC) model. The results show that (i) the smart scheduling of the batteries’ output reduces the inter-area oscillations and improves the stability of the power systems; (ii) the hybrid model of the battery is more user-friendly compared to the WECC model in power system analyses.


Author(s):  
Carlo M. De Servi ◽  
Matteo Burigana ◽  
Matteo Pini ◽  
Piero Colonna

The realization of commercial mini organic Rankine cycle (ORC) power systems (tens of kW of power output) is currently pursued by means of various research and development activities. The application driving most of the efforts is the waste heat recovery from long-haul truck engines. Obtaining an efficient mini radial inflow turbine, arguably the most suitable type of expander for this application, is particularly challenging, given the small mass flow rate, and the occurrence of nonideal compressible fluid dynamic effects in the stator. Available design methods are currently based on guidelines and loss models developed mainly for turbochargers. The preliminary geometry is subsequently adapted by means of computational fluid-dynamic calculations with codes that are not validated in case of nonideal compressible flows of organic fluids. An experimental 10 kW mini-ORC radial inflow turbine will be realized and tested in the Propulsion and Power Laboratory of the Delft University of Technology, with the aim of providing measurement datasets for the validation of computational fluid dynamics (CFD) tools and the calibration of empirical loss models. The fluid dynamic design and characterization of this machine is reported here. Notably, the turbine is designed using a meanline model in which fluid-dynamic losses are estimated using semi-empirical correlations for conventional radial turbines. The resulting impeller geometry is then optimized using steady-state three-dimensional computational fluid dynamic models and surrogate-based optimization. Finally, a loss breakdown is performed and the results are compared against those obtained by three-dimensional unsteady fluid-dynamic calculations. The outcomes of the study indicate that the optimal layout of mini-ORC turbines significantly differs from that of radial-inflow turbines (RIT) utilized in more traditional applications, confirming the need for experimental campaigns to support the conception of new design practices.


Sign in / Sign up

Export Citation Format

Share Document