A novel test method for simultaneous measurement of thermal conductivity, CTE, residual stress and Young's modulus of suspended thin films using a laser doppler vibrometer

Author(s):  
J. De Coster ◽  
M. Lofrano ◽  
R. Jansen ◽  
X. Rottenberg ◽  
S. Severi ◽  
...  
1999 ◽  
Vol 594 ◽  
Author(s):  
T. Y. Zhang ◽  
Y. J. Su ◽  
C. F. Qian ◽  
M. H. Zhao ◽  
L. Q. Chen

AbstractThe present work proposes a novel microbridge testing method to simultaneously evaluate the Young's modulus, residual stress of thin films under small deformation. Theoretic analysis and finite element calculation are conducted on microbridge deformation to provide a closed formula of deflection versus load, considering both substrate deformation and residual stress in the film. Silicon nitride films fabricated by low pressure chemical vapor deposition on silicon substrates are tested to demonstrate the proposed method. The results show that the Young's modulus and residual stress for the annealed silicon nitride film are respectively 202 GPa and 334.9 MPa.


2021 ◽  
pp. 2150350
Author(s):  
Yijun Jiang ◽  
Mingyuan Lu ◽  
Shiliang Wang ◽  
Han Huang

Temperature dependence of Young’s modulus of Ag microwhiskers was determined by a laser Doppler vibrometer. The Ag whiskers with diameters in sub-microns were synthesized by the use of physical vapor deposition (PVD). They have a five-fold twinned structure grown along the [1 1 0] direction. The temperature coefficient of Young’s modulus was measured to be [Formula: see text] ppm/K in the range of 300 K to 650 K. The measured values are very close to the reported values of [Formula: see text] ppm/K for bulk Ag single crystals. This finding can benefit the design of Ag-based micro/nano-electromechanical systems or micro/nano-interconnectors operated at elevated or lowered temperatures.


2015 ◽  
Vol 592 ◽  
pp. 69-75 ◽  
Author(s):  
Hammad Nazeer ◽  
Harish Bhaskaran ◽  
Léon A. Woldering ◽  
Leon Abelmann

2011 ◽  
Vol 1315 ◽  
Author(s):  
Ryo Endoh ◽  
Takayuki Hirano ◽  
Masaaki Takeda ◽  
Manabu Oishi ◽  
Nobuto Oka ◽  
...  

ABSTRACTThe thermal conductivity of amorphous indium zinc oxide (IZO) thin films was measured by the 3ω method. Three IZO films were prepared by dc magnetron sputtering method on Si substrate under different O2 flow ratios (O2 / [Ar+O2]) of 0%, 1%, and 5%. The thermal conductivity of IZO films decreases with an increase in O2 flow ratio, the values of the thermal conductivity were 3.4, 3.1 and 1.2 W m-1 K-1 for O2 flow ratios of 0%, 1%, and 5%, respectively. To investigate relationships among the thermal conductivity, the structure and other physical properties, we were carried out nanoindentation, Rutherford back scattering (RBS), electron spin resonance (ESR). The result of ESR measurements indicated that the amount of conduction electron in the IZO film decreases with increasing O2 flow ratio. Increase of O2 flow ratio reduces the amount of oxygen vacancies for providing free electrons. Therefore, decreasing thermal conductivity with an increase in O2 flow ratio is attributed to decreasing conduction electrons as thermal carrier. On the other hand, the chemical composition of IZO films is independent of O2 flow ratio. Furthermore, density, Young’s modulus and hardness also show little changes with increasing O2 flow ratio. Density, Young’s modulus and hardness are strongly associated with the internal structure. It is probable that influence of oxygen vacancies on the internal structure of IZO film is negligibly small.


1987 ◽  
Vol 51 (4) ◽  
pp. 241-243 ◽  
Author(s):  
Mark G. Allen ◽  
Mehran Mehregany ◽  
Roger T. Howe ◽  
Stephen D. Senturia

1997 ◽  
Vol 505 ◽  
Author(s):  
A. Karimi ◽  
O. R. Shojaei ◽  
J. L. Martin

ABSTRACTMechanical properties of titanium nitride (TiNx) thin films have been investigated using the bulge test and the depth sensing nanoindentation measurements. The bulge test was performed on the square free standing membranes made by means of standard micromachining of silicon wafers, while the nanoindentation was conducted on the films adhered to their supporting substrate. Thin layeres of titanium nitride (t = 300 – 1000 nm) were deposited in a r. f. magnetron sputtering system on the Si(100) wafers containing a layer of low stress LPCVD silicon nitride (SiNy). The bulge test was first conducted on the silicon nitride film to determine its proper residual stress and Young's modulus. Then, the composite membrane made of TiNx together with underlying silicon nitride was bulged and the related load-displacement variation was measured. Finally, using a simple rule of mixture formula the elastic mechanical properties of TiNx coatings were calculated. Both the Young's modulus and residual stress showed increasing values with negative bias voltage and nitrogen to titanium ratio, but the substrate temperature between 50–570°C was found less significant as compared to the other parameters. Nanoindentation data extracted from dynamically loading-unloading of TiN films converged to the bulge test measurements for compact coatings, but diverged from the bulge test data for porous coatings. Scanning electron microscopy observation of the cross sectioned specimens showed that TiN films first grow by formation of the nanocrystallites of size mostly between 10 – 15 nm. These nanocrystallites give rise to the columnar morphology beyond a thickness of 50–100 nm. The columns change their aspect with deposition parameters, but remain nearly perpendicular to the film surface. Relationship between microstructural evolution of columns and mechanical properties of coatings are discussed in terms of deposition parameters.


Sign in / Sign up

Export Citation Format

Share Document