Fractional-N PLL Synthesizer for linear FMCW Radar Signal Generator

Author(s):  
Ratna Indrawijaya ◽  
Dayat Kurniawan ◽  
Ros Sariningrum ◽  
Dadan Muliawandana ◽  
Bagus Edi Sukoco
2018 ◽  
Vol 18 (2) ◽  
pp. 46
Author(s):  
R. Indrawijaya ◽  
R. Sariningrum ◽  
B. Edi Sukoco ◽  
D. Muliawandana

Radar signal generator is a critical component in radar system as it determines the best achievable resolution. Single chip Fractional-N PLL synthesizer with built-in VCO and sweep modulator become more popular as Frequency Modulated Continuous Wave (FMCW) signal generator due to the simplicity and overall cost reduction. This paper presents a realization process and experimental result of dual-mode modulation pattern FMCW signal generator using HMC769LP6CE PLL. The PLL is controlled by ATMega328 microcontroller and Altera EPM240T100C5 CPLD to operate in two difference mode: 1-way sweep mode and 2-way sweep mode. The PLL is programmed with four different sweep bandwidth from 6.75–54 MHz for different range and resolution radar purpose. The performance of FMCW signal generator is measured using the output of passband signal spectrum. The experimental results indicate that the PLL-VCO with 2-way sweep mode has clearer frequency passband compared to 1-way sweep mode.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6443
Author(s):  
Jinmoo Heo ◽  
Yongchul Jung ◽  
Seongjoo Lee ◽  
Yunho Jung

This paper presents the design and implementation results of an efficient fast Fourier transform (FFT) processor for frequency-modulated continuous wave (FMCW) radar signal processing. The proposed FFT processor is designed with a memory-based FFT architecture and supports variable lengths from 64 to 4096. Moreover, it is designed with a floating-point operator to prevent the performance degradation of fixed-point operators. FMCW radar signal processing requires windowing operations to increase the target detection rate by reducing clutter side lobes, magnitude calculation operations based on the FFT results to detect the target, and accumulation operations to improve the detection performance of the target. In addition, in some applications such as the measurement of vital signs, the phase of the FFT result has to be calculated. In general, only the FFT is implemented in the hardware, and the other FMCW radar signal processing is performed in the software. The proposed FFT processor implements not only the FFT, but also windowing, accumulation, and magnitude/phase calculations in the hardware. Therefore, compared with a processor implementing only the FFT, the proposed FFT processor uses 1.69 times the hardware resources but achieves an execution time 7.32 times shorter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shintaro Hisatake ◽  
Junpei Kamada ◽  
Yuya Asano ◽  
Hirohisa Uchida ◽  
Makoto Tojo ◽  
...  

Abstract The higher the frequency, the more complex the scattering, diffraction, multiple reflection, and interference that occur in practical applications such as radar-installed vehicles and transmitter-installed mobile modules, etc. Near-field measurement in “real situations” is important for not only investigating the origin of unpredictable field distortions but also maximizing the system performance by optimal placement of antennas, modules, etc. Here, as an alternative to the previous vector-network-analyzer-based measurement, we propose a new asynchronous approach that visualizes the amplitude and phase distributions of electric near-fields three-dimensionally without placing a reference probe at a fixed point or plugging a cable to the RF source to be measured. We demonstrate the visualization of a frequency-modulated continuous wave (FMCW) signal (24 GHz ± 40 MHz, modulation cycle: 2.5 ms), and show that the measured radiation patterns of a standard horn antenna agree well with the simulation results. We also demonstrate a proof-of-concept experiment that imitates a realistic situation of a bumper installed vehicle to show how the bumper alters the radiation patterns of the FMCW radar signal. The technique is based on photonics and enables measuring in the microwave to millimeter-wave range.


2011 ◽  
Vol 135-136 ◽  
pp. 886-892
Author(s):  
Wen Hui Chen ◽  
Xin Xi Meng ◽  
Xiao Min Liu

In order to process and analyze the signal of frequency modulated continuous wave (FMCW) radar, a radar semi-physical simulation(RSPS) system based on STM32F103VE6 chip is designed in this paper. By designing the hardware and software of system, the RSPS system can process the radar signal, detect the target, verify the data process algorithm and display the result on TFT-LCD screen. In addition, the collected data can be uploaded to PC by RS-232 interfaces which improves the reliability, stability and practicability of system. The waveform and spectrum maps are utilized to show the feasibility of RSPS system in analysing FMCW radar signal. Experimental results show that this system has many advantages, such as multifunction, low power consumption and low cost.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6505
Author(s):  
Emmi Turppa ◽  
Juha M. Kortelainen ◽  
Oleg Antropov ◽  
Tero Kiuru

Remote monitoring of vital signs for studying sleep is a user-friendly alternative to monitoring with sensors attached to the skin. For instance, remote monitoring can allow unconstrained movement during sleep, whereas detectors requiring a physical contact may detach and interrupt the measurement and affect sleep itself. This study evaluates the performance of a cost-effective frequency modulated continuous wave (FMCW) radar in remote monitoring of heart rate and respiration in scenarios resembling a set of normal and abnormal physiological conditions during sleep. We evaluate the vital signs of ten subjects in different lying positions during various tasks. Specifically, we aim for a broad range of both heart and respiration rates to replicate various real-life scenarios and to test the robustness of the selected vital sign extraction methods consisting of fast Fourier transform based cepstral and autocorrelation analyses. As compared to the reference signals obtained using Embla titanium, a certified medical device, we achieved an overall relative mean absolute error of 3.6% (86% correlation) and 9.1% (91% correlation) for the heart rate and respiration rate, respectively. Our results promote radar-based clinical monitoring by showing that the proposed radar technology and signal processing methods accurately capture even such alarming vital signs as minimal respiration. Furthermore, we show that common parameters for heart rate variability can also be accurately extracted from the radar signal, enabling further sleep analyses.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2831 ◽  
Author(s):  
Youn-Sik Son ◽  
Hyuk-Kee Sung ◽  
Seo Heo

Recently, many automobiles adopt radar sensors to support advanced driver assistance system (ADAS) functions. As the number of vehicles with radar systems increases the probability of radar signal interference and the accompanying ghost target problems become serious. In this paper, we propose a novel algorithm where we deploy per-vehicle chirp sequence in a frequency modulated continuous wave (FMCW) radar to mitigate the vehicle-to-vehicle radar interference. We devise a chirp sequence set so that the slope of each vehicle’s chirp sequence does not overlap within the set. By assigning one of the chirp sequences to each vehicle, we mitigate the interference from the radar signals transmitted by the neighboring vehicles. We confirm the performance of the proposed method stochastically by computer simulation. The simulation results show that the detection and false alarm performance is improved significantly by the proposed method.


Sign in / Sign up

Export Citation Format

Share Document