scholarly journals Details-First, Show Context, Overview Last: Supporting Exploration of Viscous Fingers in Large-Scale Ensemble Simulations

2019 ◽  
Vol 25 (1) ◽  
pp. 1225-1235 ◽  
Author(s):  
Timothy Luciani ◽  
Andrew Burks ◽  
Cassiano Sugiyama ◽  
Jonathan Komperda ◽  
G. Elisabeta Marai
2015 ◽  
Vol 15 (5) ◽  
pp. 2341-2365 ◽  
Author(s):  
P. Hess ◽  
D. Kinnison ◽  
Q. Tang

Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4–NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30–90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño–Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.


2015 ◽  
Vol 8 (10) ◽  
pp. 9103-9146
Author(s):  
Y. Heng ◽  
L. Hoffmann ◽  
S. Griessbach ◽  
T. Rößler ◽  
O. Stein

Abstract. An inverse transport modeling approach based on the concepts of sequential importance resampling and parallel computing is presented to reconstruct altitude-resolved time series of volcanic emissions, which often can not be obtained directly with current measurement techniques. A new inverse modeling and simulation system, which implements the inversion approach with the Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC) is developed to provide reliable transport simulations of volcanic sulfur dioxide (SO2). In the inverse modeling system MPTRAC is used to perform two types of simulations, i. e., large-scale ensemble simulations for the reconstruction of volcanic emissions and final transport simulations. The transport simulations are based on wind fields of the ERA-Interim meteorological reanalysis of the European Centre for Medium Range Weather Forecasts. The reconstruction of altitude-dependent SO2 emission time series is also based on Atmospheric Infrared Sounder (AIRS) satellite observations. A case study for the eruption of the Nabro volcano, Eritrea, in June 2011, with complex emission patterns, is considered for method validation. Meteosat Visible and InfraRed Imager (MVIRI) near-real-time imagery data are used to validate the temporal development of the reconstructed emissions. Furthermore, the altitude distributions of the emission time series are compared with top and bottom altitude measurements of aerosol layers obtained by the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite instruments. The final transport simulations provide detailed spatial and temporal information on the SO2 distributions of the Nabro eruption. The SO2 column densities from the simulations are in good qualitative agreement with the AIRS observations. Our new inverse modeling and simulation system is expected to become a useful tool to also study other volcanic eruption events.


2013 ◽  
Vol 70 (5) ◽  
pp. 1470-1487 ◽  
Author(s):  
Dale R. Durran ◽  
Patrick A. Reinecke ◽  
James D. Doyle

Abstract The predictability of lowland snow in the Puget Sound region of the Pacific Northwest is explored by analyzing the spread in 100-member ensemble simulations for two events from December 2008. Sensitivities to the microphysical and boundary layer parameterizations in these simulations are minimized by estimating the likely precipitation type from the forecast 850-hPa temperatures and the established rain–snow climatology. Results suggest that the ensemble spread in events such as these, which were triggered by amplifying short waves, may develop a significant fraction of both rain-likely members and snow-likely members at forecast lead times as short as 36 h. The perturbation kinetic energy of the ensemble members about the ensemble mean () is not maximized at small scales. Instead, the power in the initial spectrum of produced by the authors’ ensemble Kalman filter (EnKF) data assimilation cycle increases with increasing horizontal scale. The power in subsequently grows with time, while maintaining approximately the same spectral shape. There is no evidence of small-scale perturbations developing rapidly and transferring their influence upscale. Instead, the large-scale perturbations appear to grow more rapidly during the first 12 h than those at the smallest resolved scales.


2014 ◽  
Vol 14 (14) ◽  
pp. 20461-20520 ◽  
Author(s):  
P. Hess ◽  
D. Kinnison ◽  
Q. Tang

Abstract. Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, attribution of tropospheric interannual ozone variability to specific processes has proved difficult. Here we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953–2005 in the Northern Hemisphere (N.~H.) mid-latitudes using four ensemble simulations of the Free Running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are forced with observed time varying: (1) sea surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) Quasi-Biennial Oscillation (QBO); (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). Detailed representation of stratospheric chemistry is simulated including the ozone loss processes due to volcanic eruptions and polar stratospheric clouds. In the troposphere ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of the tropospheric chemistry, the FR WACCM simulations capture the measured N. H. background interannual tropospheric ozone variability in many locations to a surprising extent, suggesting the importance of external forcing in driving interannual ozone variability. The variability and trend in the simulated 1953–2005 tropospheric ozone record from 30–90° N at background surface measurement sites, 500 hPa measurement sites and in the area average is largely explained on interannual timescales by changes in the 150 hPa 30–90° N ozone flux and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30–90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 150 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30–90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30–90° N simulated downward residual velocity at 150 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30–90° N 150 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990–2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30–90° N. This identified mode of ozone variability shows strong stratosphere–troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Nino Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Sign in / Sign up

Export Citation Format

Share Document