Vehicle Yaw Stability-Control System Design Based on Sliding Mode and Backstepping Control Approach

2010 ◽  
Vol 59 (7) ◽  
pp. 3674-3678 ◽  
Author(s):  
Hongliang Zhou ◽  
Zhiyuan Liu
2014 ◽  
Vol 644-650 ◽  
pp. 313-316
Author(s):  
Wen Lai Liu

large-scale temperature stability control method is studied in this paper. In the process of large-scale temperature control, the stability of control is a very important indicator. To this end, this paper proposes a large-scale temperature stability control algorithm based on hierarchical control method. Balance equation of large-scale temperature stability control is created for the effective transmission of control data. According to the constant control theory, large-scale temperature stability control system design is achieved. Experimental results show that the proposed algorithm for large-scale temperature stability control system design, can greatly improve the stability of control, and get the satisfactory results.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
M.K. Aripin ◽  
Y. M. Sam ◽  
A. D. Kumeresan ◽  
M.F. Ismail ◽  
Peng Kemao

A review study on integrated active steering and braking control for vehicle yaw stability system is conducted and its finding is discussed in this paper. For road-vehicle dynamic, lateral dynamic control is important in order to determine the vehicle stability. The aw stability control system is the prominent approach for vehicle lateral dynamics where the actual yaw rate and sideslip should be tracked by the controller close to the desired response. To improve the performance of yaw stability control during steady state and critical driving conditions, a current approach using active control of integrated steering and braking could be implemented. This review study discusses the vehicle models, control objectives, control problems and propose control strategies for vehicle yaw stability control system. In the view of control system engineering, the transient performances of tracking control are essential. Based on the review, this paper discusses a basic concept of control strategy based on the composite nonlinear feedback (CNF) and sliding mode control (SMC) whichcan be proposed for integrated active steering and braking control in order to improve the transient performances of the yaw rate and sideslip tracking control in the presence of uncertainties and disturbances.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
M. K. Aripin ◽  
Yahaya Md Sam ◽  
Kumeresan A. Danapalasingam ◽  
Kemao Peng ◽  
N. Hamzah ◽  
...  

Yaw stability control system plays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control.


Sign in / Sign up

Export Citation Format

Share Document