Aiding MEMS IMU with building heading for indoor pedestrian navigation

Author(s):  
K. Abdulrahim ◽  
C. Hide ◽  
T. Moore ◽  
C. Hill
Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 364 ◽  
Author(s):  
Ming Xia ◽  
Chundi Xiu ◽  
Dongkai Yang ◽  
Li Wang

The pedestrian navigation system (PNS) based on inertial navigation system-extended Kalman filter-zero velocity update (INS-EKF-ZUPT or IEZ) is widely used in complex environments without external infrastructure owing to its characteristics of autonomy and continuity. IEZ, however, suffers from performance degradation caused by the dynamic change of process noise statistics and heading estimation errors. The main goal of this study is to effectively improve the accuracy and robustness of pedestrian localization based on the integration of the low-cost foot-mounted microelectromechanical system inertial measurement unit (MEMS-IMU) and ultrasonic sensor. The proposed solution has two main components: (1) the fuzzy inference system (FIS) is exploited to generate the adaptive factor for extended Kalman filter (EKF) after addressing the mismatch between statistical sample covariance of innovation and the theoretical one, and the fuzzy adaptive EKF (FAEKF) based on the MEMS-IMU/ultrasonic sensor for pedestrians was proposed. Accordingly, the adaptive factor is applied to correct process noise covariance that accurately reflects previous state estimations. (2) A straight motion heading update (SMHU) algorithm is developed to detect whether a straight walk happens and to revise errors in heading if the ultrasonic sensor detects the distance between the foot and reflection point of the wall. The experimental results show that horizontal positioning error is less than 2% of the total travelled distance (TTD) in different environments, which is the same order of positioning error compared with other works using high-end MEMS-IMU. It is concluded that the proposed approach can achieve high performance for PNS in terms of accuracy and robustness.


2011 ◽  
Vol 65 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Khairi Abdulrahim ◽  
Chris Hide ◽  
Terry Moore ◽  
Chris Hill

Shoe mounted Inertial Measurement Units (IMU) are often used for indoor pedestrian navigation systems. The presence of a zero velocity condition during the stance phase enables Zero Velocity Updates (ZUPT) to be applied regularly every time the user takes a step. Most of the velocity and attitude errors can be estimated using ZUPTs. However, good heading estimation for such a system remains a challenge. This is due to the poor observability of heading error for a low cost Micro-Electro-Mechanical (MEMS) IMU, even with the use of ZUPTs in a Kalman filter. In this paper, the same approach is adopted where a MEMS IMU is mounted on a shoe, but with additional constraints applied. The three constraints proposed herein are used to generate measurement updates for a Kalman filter, known as ‘Heading Update’, ‘Zero Integrated Heading Rate Update’ and ‘Height Update’.The first constraint involves restricting heading drift in a typical building where the user is walking. Due to the fact that typical buildings are rectangular in shape, an assumption is made that most walking in this environment is constrained to only follow one of the four main headings of the building. A second constraint is further used to restrict heading drift during a non-walking situation. This is carried out because the first constraint cannot be applied when the user is stationary. Finally, the third constraint is applied to limit the error growth in height. An assumption is made that the height changes in indoor buildings are only caused when the user walks up and down a staircase. Several trials were shown to demonstrate the effectiveness of integrating these constraints for indoor pedestrian navigation. The results show that an average return position error of 4·62 meters is obtained for an average distance of 1557 meters using only a low cost MEMS IMU.


2012 ◽  
Vol 562-564 ◽  
pp. 1272-1278
Author(s):  
Qi Fan Zhou ◽  
Hai Zhang ◽  
You Ze Mao ◽  
Yan Hong Chang

Pedestrian Navigation System (PNS) is a system aims at determining the current location of person, recording the walking trajectory. This paper presents an algorithm of PNS based on lowperformance MEMS-IMU attaching to the waist of people. The algorithm consists of step detection, model identification, stride, heading determination and position estimation. A method to identify a user’s status, calibrate the length coefficient K by Least-Squares and update K online according to different models and acceleration is presented, which adaptively adjusts the calculation of stride length in case of different walking speeds and manners. The integration of INS and magnetic azimuth for heading direction is put forward and the walking trajectory is calculated by Dead Reckoning (DR). Several tests have been conducted and the algorithm performed well.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3787
Author(s):  
Li Xing ◽  
Xiaowei Tu ◽  
Zhi Chen

Using an MEMS Inertial Measurement Unit (MEMS IMU) array mounted on foot is a feasible approach to improve the pedestrian tracking accuracy for the pedestrian navigation system (PNS). Based on the in-house developed IMU array, the paper proposes a new integrated framework that combines adaptive deck reckoning (ADR) with the modified zero velocity update (ZUPT). In the proposed ADR algorithm, the IMUs with large drift errors on the array are selected and removed according to the step length and the track angle computed by each IMU on the array. Then, by using the step length and the track angle of each step computed by remaining IMUs, the foot position extracted from the traditional ZUPT model is estimated on the basis of least squares (LS) so as to improve the traveled distance calculation accuracy. Compared with the traditional IMU array fusion method based on a maximum likelihood estimator (MLE) when it is used in the PNS, which is approximately taking the mean value of array readings, the proposed method is equivalent to adaptively fusing the array readings and thus improves the pedestrian tracking accuracy. To compare the proposed method with MLE, two different types of walking tracks are designed. The 161 m straight line experiments show that the end position by ADR/modified ZUPT method is much closer to the one of the reference trajectory compared with the MLE in repeated walks, and the closed-loop tracks about 300 m show that the positioning error with respect to the total traveled distance is less than 0.6% (1σ), which is higher than 1% (1σ) of MLE.


Author(s):  
A.E. Semenov

The method of pedestrian navigation in the cities illustrated by the example of Saint-Petersburg was investigated. The factors influencing people when they choose a route for their walk were determined. Based on acquired factors corresponding data was collected and used to develop model determining attractiveness of a street in the city using Random Forest algorithm. The results obtained shows that routes provided by the method are 14% more attractive and just 6% longer compared with the shortest ones.


Sign in / Sign up

Export Citation Format

Share Document