Dual-frequency precipitation radar estimation of rainfall rate: Potential application to global precipitation mission

Author(s):  
Minda Le ◽  
V. Chandrasekar
2021 ◽  
Vol 13 (22) ◽  
pp. 4690
Author(s):  
Merhala Thurai ◽  
Viswanathan Bringi ◽  
David Wolff ◽  
David A. Marks ◽  
Patrick N. Gatlin ◽  
...  

A novel method for retrieving the moments of rain drop size distribution (DSD) from the dual-frequency precipitation radar (DPR) onboard the global precipitation mission satellite (GPM) is presented. The method involves the estimation of two chosen reference moments from two specific DPR products, namely the attenuation-corrected Ku-band radar reflectivity and (if made available) the specific attenuation at Ka-band. The reference moments are then combined with a function representing the underlying shape of the DSD based on the generalized gamma model. Simulations are performed to quantify the algorithm errors. The performance of methodology is assessed with two GPM-DPR overpass cases over disdrometer sites, one in Huntsville, Alabama and one in Delmarva peninsula, Virginia, both in the US. Results are promising and indicate that it is feasible to estimate DSD moments directly from DPR-based quantities.


2019 ◽  
Vol 36 (4) ◽  
pp. 607-619 ◽  
Author(s):  
Minda Le ◽  
V. Chandrasekar

AbstractExtensive evaluations have been performed on the dual-frequency classification module in the Global Precipitation Mission (GPM) Dual-Frequency Precipitation Radar (DPR) level-2 algorithm. Both rain type classification and melting-layer detection continue to show promising results in the validations. Surface snowfall identification is a feature newly added in the classification module to the recently released version to provide a surface snowfall flag for each qualified vertical profile. This algorithm is developed upon vertical features of Ku- and Ka-band reflectivity and dual-frequency ratio from DPR. In this paper, we validate this surface snowfall identification algorithm with ground radars including NEXRAD, NASA Polarimetric Radar (NPOL), and CSU–CHILL radar during concurrent precipitation events and GPM validation campaign Olympic Mountain Experiment (OLYMPEX). Other ground truth such as Precipitation Imaging Package (PIP) and ground report is also included in the validation. Based on 16 validation cases in the years 2014–18, the average match ratio between surface snowfall flag from space radar and ground radar is around 87.8%. Promising agreements are achieved with different validation sources. Algorithm limitation and potential improvement are discussed.


2020 ◽  
Vol 59 (7) ◽  
pp. 1195-1215
Author(s):  
Ruiyao Chen ◽  
Ralf Bennartz

AbstractThe sensitivity of microwave brightness temperatures (TBs) to hydrometeors at frequencies between 89 and 190 GHz is investigated by comparing Fengyun-3C (FY-3C) Microwave Humidity Sounder-2 (MWHS-2) measurements with radar reflectivity profiles and retrieved products from the Global Precipitation Measurement mission’s Dual-Frequency Precipitation Radar (DPR). Scattering-induced TB depressions (ΔTBs), calculated by subtracting simulated cloud-free TBs from bias-corrected observed TBs for each channel, are compared with DPR-retrieved hydrometeor water path (HWP) and vertically integrated radar reflectivity ZINT. We also account for the number of hydrometeors actually visible in each MWHS-2 channel by weighting HWP with the channel’s cloud-free gas transmission profile and the observation slant path. We denote these transmission-weighted, slant-path-integrated quantities with a superscript asterisk (e.g., HWP*). The so-derived linear sensitivity of ΔTB with respect to HWP* increases with frequency roughly to the power of 1.78. A retrieved HWP* of 1 kg m−2 at 89 GHz on average corresponds to a decrease in observed TB, relative to a cloud-free background, of 11 K. At 183 GHz, the decrease is about 34–53 K. We perform a similar analysis using the vertically integrated, transmission-weighted slant-path radar reflectivity and find that ΔTB also decreases approximately linearly with . The exponent of 0.58 corresponds to the one we find in the purely DPR-retrieval-based ZINT–HWP relation. The observed sensitivities of ΔTB with respect to and HWP* allow for the validation of hydrometeor scattering models.


2021 ◽  
Author(s):  
Fumie Murata ◽  
Toru Terao ◽  
Yusuke Yamane ◽  
Masashi Kiguchi ◽  
Azusa Fukushima ◽  
...  

<p>The near surface rain (NSR) dataset of the Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) and the Global Precipitation Mission (GPM) Dual Precipitation Radar (DPR) was validated using around 40 tipping bucket raingauges installed over the northeastern Indian subcontinent, and disdrometers in the Meghalaya Plateau, India. The comparison during 2006-2014 showed significant overestimation of TRMM PR in Assam and Bengal plains during pre-monsoon season (March to May), and significant underestimation of TRMM PR over the Indian subcontinent during monsoon season (June to September). Whereas, the comparison during 2014-2019 showed significant overestimation of GPM DPR over only Meghalaya during monsoon season. The validation of rain-drop size distribution parameters: Dm and Nw showed positive correlation between GPM DPR derived values and Parsivel disdrometers observed ones, while unrealistic concentration of Nw on 30-40 dB was derived by GPM DPR. In the southern slope of the Meghala Plateau, NSR of TRMM PR at Cherrapunji, where is known as the heaviest rainfall station, on the plateau observed smaller rainfall than that in the adjacent valley. However, newly installed raingauges in the valley showed rather less rainfall than that on the plateau. The validity of the satellite derived rainfall distribution over the complicated terrain are discussed.</p>


2019 ◽  
Vol 58 (7) ◽  
pp. 1429-1448 ◽  
Author(s):  
Gail Skofronick-Jackson ◽  
Mark Kulie ◽  
Lisa Milani ◽  
Stephen J. Munchak ◽  
Norman B. Wood ◽  
...  

AbstractRetrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global Precipitation Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow–rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR–DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z–S approach.


2017 ◽  
Vol 18 (5) ◽  
pp. 1247-1269 ◽  
Author(s):  
Peter Speirs ◽  
Marco Gabella ◽  
Alexis Berne

Abstract The Global Precipitation Measurement (GPM) mission Dual-Frequency Precipitation Radar (DPR) provides a unique set of three-dimensional radar precipitation estimates across much of the globe. Both terrain and climatic conditions can have a strong influence on the reliability of these estimates. Switzerland provides an ideal testbed to evaluate the performance of the DPR in complex terrain: it consists of a mixture of very complex terrain (the Alps) and the far flatter Swiss Plateau. It is also well instrumented, covered with a dense gauge network as well as a network of four dual-polarization C-band weather radars, with the same instrument network used in both the Plateau and the Alps. Here an evaluation of the GPM DPR rainfall rate products against the MeteoSwiss radar rainfall rate product for the first two years of the GPM DPR’s operation is presented. Errors in both detection and estimation are considered, broken down by terrain complexity, season, precipitation phase, precipitation type, and precipitation rate. Errors are considered both integrated across the entire domain and spatially, and consistent underestimation of precipitation by GPM is found. This rises to −51% in complex terrain in the winter, primarily due to the predominance of DPR measurements wholly in the solid phase, where problems are caused by lower reflectivities. The smaller vertical extent of precipitation in winter is also likely a cause. Both detection and estimation performance are found to be significantly better in summer than in winter, in liquid than in solid precipitation, and in flatter terrain than in complex terrain.


Sign in / Sign up

Export Citation Format

Share Document