global precipitation mission
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
Vol 13 (22) ◽  
pp. 4690
Author(s):  
Merhala Thurai ◽  
Viswanathan Bringi ◽  
David Wolff ◽  
David A. Marks ◽  
Patrick N. Gatlin ◽  
...  

A novel method for retrieving the moments of rain drop size distribution (DSD) from the dual-frequency precipitation radar (DPR) onboard the global precipitation mission satellite (GPM) is presented. The method involves the estimation of two chosen reference moments from two specific DPR products, namely the attenuation-corrected Ku-band radar reflectivity and (if made available) the specific attenuation at Ka-band. The reference moments are then combined with a function representing the underlying shape of the DSD based on the generalized gamma model. Simulations are performed to quantify the algorithm errors. The performance of methodology is assessed with two GPM-DPR overpass cases over disdrometer sites, one in Huntsville, Alabama and one in Delmarva peninsula, Virginia, both in the US. Results are promising and indicate that it is feasible to estimate DSD moments directly from DPR-based quantities.


Author(s):  
Lagouvardos K ◽  
A. Karagiannidis ◽  
S. Dafis ◽  
A. Kalimeris ◽  
V. Kotroni

AbstractDuring 15-21 September 2020, an intense medicane, named Ianos, formed over the warm Mediterranean Sea. Following a path of approximately 1900 km, Medicane Ianos affected Greece resulting in four casualties and devastating damages in the western and central parts of Greece. Persistent gale force 1-minute winds up to 44 ms‒1 and wind gusts up to 54 ms‒1 were recorded in Cephalonia island (Ionian Sea), while record-breaking amounts of accumulated rainfall have been recorded in several Ionian Islands, as well as in parts of Central Greece. Analysis of the available observations showed that Ianos was the most intense medicane ever recorded in the Mediterranean. This paper aims at investigating the genesis and evolution of the medicane, based on in situ observations, satellite measurements and model analyses. Towards that objective, Meteosat Second Generation (MSG) SEVIRI imagery, combined with lightning data permitted to follow the evolution of convective activity during the various phases of Ianos. This investigation is complemented with upper-air model analyses in order to evaluate the synoptic environment within which Ianos has formed and was sustained during 7 days. Finally, the Global Precipitation Mission Core Observatory satellite (GPM-CO) overpasses over Medicane Ianos provided invaluable information about its 3-D structure, especially during its most intense phase.


2021 ◽  
Author(s):  
Alain Protat ◽  
Valentin Louf ◽  
Joshua Soderholm ◽  
Jordan Brook ◽  
William Ponsonby

Abstract. This study uses weather radar observations collected from Research Vessel Investigator to evaluate the Australian weather radar network calibration monitoring technique that uses spaceborne radar observations from the NASA Global Precipitation Mission (GPM). Quantitative operational applications such as rainfall and hail nowcasting require a calibration accuracy of 1 dB for radars of the Australian network covering capital cities. Seven ground-based radars along the coast and the ship-based OceanPOL radar are first calibrated independently using GPM radar overpasses over a 3-month period. The calibration difference between the OceanPOL radar and each of the 7 operational radars is then estimated using collocated, gridded, radar observations to evaluate the accuracy of the GPM technique. For all seven radars the calibration difference with the ship radar lies within ±0.5 dB, therefore fulfilling the 1 dB requirement. This result validates the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks (provided that the spaceborne radar maintains a high calibration accuracy). The analysis of the day-to-day and hourly variability of calibration differences between the OceanPOL and Darwin (Berrimah) radars also demonstrates that quantitative comparisons of gridded radar observations can accurately track daily and hourly calibration differences between pairs of operational radars with overlapping coverage (daily and hourly standard deviations of ~ 0.3 dB and ~ 1 dB, respectively).


2021 ◽  
Vol 14 (5) ◽  
pp. 3427-3447
Author(s):  
Vasileios Barlakas ◽  
Alan J. Geer ◽  
Patrick Eriksson

Abstract. Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances under all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization – the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10–15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V and H channels, which is quantified by the polarization ratio ρ. Using dual-polarization observations from the Global Precipitation Mission microwave imager (GMI), suitable values for ρ were found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with a broadly neutral impact on the forecast but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders and at frequencies above 183.0 GHz where the polarization can be even stronger.


Author(s):  
Maheshwari Neelam ◽  
Rajat Bindlish ◽  
Peggy O’Neill ◽  
George J. Huffman ◽  
Rolf Reichle ◽  
...  

The precipitation flag in the Soil Moisture Active Passive (SMAP) Level 2 passive soil moisture (L2SMP) retrieval product indicates the presence or absence of heavy precipitation at the time of the SMAP overpass. The flag is based on precipitation estimates from the Goddard Earth Observing System (GEOS) Forward Processing numerical weather prediction system. An error in flagging during an active or recent precipitation event can either (1) produce an overestimation of soil moisture due to short-term surface wetting of vegetation and/or surface ponding (if soil moisture retrieval was attempted in the presence of rain), or (2) produce an unnecessary non-retrieval of soil moisture and loss of data (if retrieval is flagged due to an erroneous indication of rain). Satellite precipitation estimates from the Integrated Multi-satellite Retrievals for GPM (IMERG) Version 06 Early Run (latency of ~4 hrs) precipitationCal product are used here to evaluate the GEOS-based precipitation flag in the L2SMP product for both the 6 PM ascending and 6 AM descending SMAP overpasses over the first five years of the mission (2015-2020). Consisting of blended precipitation measurements from the GPM (Global Precipitation Mission) satellite constellation, IMERG is treated as the “truth” when comparing to the GEOS model forecasts of precipitation used by SMAP. Key results include: i) IMERG measurements generally show higher spatial variability than the GEOS forecast precipitation, ii) the IMERG product has a higher frequency of light precipitation amounts, and iii) the effect of incorporating IMERG rainfall measurements in lieu of GEOS precipitation forecasts are minimal on the L2SMP retrieval accuracy (determined vs. in situ soil moisture measurements at core validation sites). Our results indicate that L2SMP retrievals continue to meet the mission’s accuracy requirement (standard deviation of the ubRMSE less than 0.04 m3/m3).


2021 ◽  
Author(s):  
Fumie Murata ◽  
Toru Terao ◽  
Yusuke Yamane ◽  
Masashi Kiguchi ◽  
Azusa Fukushima ◽  
...  

<p>The near surface rain (NSR) dataset of the Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) and the Global Precipitation Mission (GPM) Dual Precipitation Radar (DPR) was validated using around 40 tipping bucket raingauges installed over the northeastern Indian subcontinent, and disdrometers in the Meghalaya Plateau, India. The comparison during 2006-2014 showed significant overestimation of TRMM PR in Assam and Bengal plains during pre-monsoon season (March to May), and significant underestimation of TRMM PR over the Indian subcontinent during monsoon season (June to September). Whereas, the comparison during 2014-2019 showed significant overestimation of GPM DPR over only Meghalaya during monsoon season. The validation of rain-drop size distribution parameters: Dm and Nw showed positive correlation between GPM DPR derived values and Parsivel disdrometers observed ones, while unrealistic concentration of Nw on 30-40 dB was derived by GPM DPR. In the southern slope of the Meghala Plateau, NSR of TRMM PR at Cherrapunji, where is known as the heaviest rainfall station, on the plateau observed smaller rainfall than that in the adjacent valley. However, newly installed raingauges in the valley showed rather less rainfall than that on the plateau. The validity of the satellite derived rainfall distribution over the complicated terrain are discussed.</p>


2020 ◽  
Vol 12 (23) ◽  
pp. 3964
Author(s):  
Pius Nnamdi Nwachukwu ◽  
Frederic Satge ◽  
Samira El Yacoubi ◽  
Sebastien Pinel ◽  
Marie-Paule Bonnet

In this study, 16 satellite-based precipitation products (SPPs) comprising satellite, gauge and reanalysis datasets were assessed on a monthly time step using precipitation data from 11 gauge stations across Nigeria within the 2000–2012 period as reference. Despite the ability of some of the SPPs to reproduce the salient north–south pattern of the annual rainfall field, the Kling–Gupta efficiency (KGE) results revealed substantial discrepancies among the SPP estimates. Generally, the SPP reliability varies spatially and temporally, with all SPPs performing better over part of central Nigeria during the dry season. When we compared the real-time and adjusted satellite-based products, the results showed that the adjusted products had a better KGE score. The assessment also showed that the reliability of integrated multi-satellite retrievals for Global Precipitation Mission (IMERG) products was consistent with that of their predecessor Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA). Finally, the best overall scores were obtained from multi-source weighted-ensemble precipitation (MSWEP) v.2.2 and IMERG-F v.6. Both products are therefore suggested for further hydrological studies.


2020 ◽  
Author(s):  
Vasileios Barlakas ◽  
Alan J. Geer ◽  
Patrick Eriksson

Abstract. Numerical weather prediction systems still employ many simplifications when assimilating microwave radiances in all-sky conditions (clear sky, cloudy, and precipitation). For example, the orientation of ice hydrometeors is ignored, along with the polarization that this causes. We present a simple approach for approximating hydrometeor orientation, requiring minor adaption of software and no additional calculation burden. The approach is introduced in the RTTOV (Radiative Transfer for TOVS) forward operator and tested in the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). For the first time within a data assimilation (DA) context, this represents the ice-induced brightness temperature differences between vertical (V) and horizontal (H) polarization, the polarization difference (PD). The discrepancies in PD between observations and simulations decrease by an order of magnitude at 166.5 GHz, with maximum reductions of 10–15 K. The error distributions, which were previously highly skewed and therefore problematic for DA, are now roughly symmetrical. The approach is based on rescaling the extinction in V- and H-channels, which is quantified by the polarization ratio ρ. Using dual polarization observations from Global Precipitation Mission microwave imager (GMI), suitable value for ρ was found to be 1.5 and 1.4 at 89.0 and 166.5 GHz, respectively. The scheme was used for all the conical scanners assimilated at ECMWF, with broadly neutral impact on the forecast, but with an increased physical consistency between instruments that employ different polarizations. This opens the way towards representing hydrometeor orientation for cross-track sounders, and at frequencies above 183.0 GHz where the polarization can be even stronger.


2020 ◽  
Vol 12 (19) ◽  
pp. 3162 ◽  
Author(s):  
Sana Ullah ◽  
Zhengkang Zuo ◽  
Feizhou Zhang ◽  
Jianghua Zheng ◽  
Shifeng Huang ◽  
...  

To obtain the high-resolution multitemporal precipitation using spatial downscaling technique on a precipitation dataset may provide a better representation of the spatial variability of precipitation to be used for different purposes. In this research, a new downscaling methodology such as the global precipitation mission (GPM)-based multitemporal weighted precipitation analysis (GMWPA) at 0.05° resolution is developed and applied in the humid region of Mainland China by employing the GPM dataset at 0.1° and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 30 m DEM-based geospatial predictors, i.e., elevation, longitude, and latitude in empirical distribution-based framework (EDBF) algorithm. The proposed methodology is a two-stepped process in which a scale-dependent regression analysis between each individual precipitation variable and the EDBF-based weighted precipitation with geospatial predictor(s), and to downscale the predicted multitemporal weighted precipitation at a refined scale is developed for the downscaling of GMWPA. While comparing results, it shows that the weighted precipitation outperformed all precipitation variables in terms of the coefficient of determination (R2) value, whereas they outperformed the annual precipitation variables and underperformed as compared to the seasonal and the monthly variables in terms of the calculated root mean square error (RMSE) value. Based on the achieved results, the weighted precipitation at the low-resolution (e.g., at 0.75° resolution) along-with the original resolution (e.g., at 0.1° resolution) is employed in the downscaling process to predict the average multitemporal precipitation, the annual total precipitation for the year 2001 and 2004, and the average annual precipitation (2001–2015) at 0.05° resolution, respectively. The downscaling approach resulting through proposed methodology captured the spatial patterns with greater accuracy at higher spatial resolution. This work showed that it is feasible to increase the spatial resolution of a precipitation variable(s) with greater accuracy on an annual basis or as an average from the multitemporal precipitation dataset using a geospatial predictor as the proxy of precipitation through the weighted precipitation in EDBF environment.


2020 ◽  
Vol 12 (9) ◽  
pp. 1426 ◽  
Author(s):  
Tareefa S. Alsumaiti ◽  
Khalid Hussein ◽  
Dawit T. Ghebreyesus ◽  
Hatim O. Sharif

Satellite-based precipitation products are becoming available at very high temporal and spatial resolutions, which has accelerated their use in various hydro-meteorological and hydro-climatological applications. Because the quantitative accuracy of such products is affected by numerous factors related to atmospheric and terrain properties, validating them over different regions and environments is needed. This study investigated the performance of two high-resolution global satellite-based precipitation products: the climate prediction center MORPHing technique (CMORPH) and the latest version of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Mission (GPM) algorithm (IMERG), V06, over the United Arab Emirates from 2010 through 2018. The estimates of the products and that of 71 in situ rain gauges distributed across the country were compared by employing several common quantitative, categorical, and graphical statistical measures at daily, event-duration, and annual temporal scales, and at the station and study area spatial scales. Both products perform quite well in rainfall detection (above 70%), but report rainfall not observed by the rain gauges at an alarming rate (more than 30%), especially for light rain (lower quartile). However, for moderate and intense (upper quartiles) rainfall rates, performance is much better. Because both products are highly correlated with rain gauge observations (mostly above 0.7), the satellite rainfall estimates can probably be significantly improved by removing the bias. Overall, the CMORPH and IMERG estimates demonstrate great potential for filling spatial gaps in rainfall observations, in addition to improving the temporal resolution. However, further improvement is required, regarding the overestimation and underestimation of small and large rainfall amounts, respectively.


Sign in / Sign up

Export Citation Format

Share Document