A Comparison Study of the Model Based SOC Estimation Methods for Lithium-Ion Batteries

Author(s):  
Jun Xu ◽  
Binggang Cao ◽  
Junyi Cao ◽  
Zhongyue Zou ◽  
Chunting Chris Mi ◽  
...  
Energies ◽  
2014 ◽  
Vol 7 (12) ◽  
pp. 8446-8464 ◽  
Author(s):  
Yong Tian ◽  
Bizhong Xia ◽  
Mingwang Wang ◽  
Wei Sun ◽  
Zhihui Xu

Energies ◽  
2014 ◽  
Vol 7 (8) ◽  
pp. 5065-5082 ◽  
Author(s):  
Zhongyue Zou ◽  
Jun Xu ◽  
Chris Mi ◽  
Binggang Cao ◽  
Zheng Chen

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5265
Author(s):  
Longxing Wu ◽  
Kai Liu ◽  
Hui Pang ◽  
Jiamin Jin

State of Charge (SOC) is essential for a smart Battery Management System (BMS). Traditional SOC estimation methods of lithium-ion batteries are usually conducted using battery equivalent circuit models (ECMs) and the impact of current sensor bias on SOC estimation is rarely considered. For this reason, this paper proposes an online SOC estimation based on a simplified electrochemical model (EM) for lithium-ion batteries considering sensor bias. In EM-based SOC estimation structure, the errors from the current sensor bias are addressed by proportional–integral observer. Then, the accuracy of the proposed EM-based SOC estimation is validated under different operating conditions. The results indicate that the proposed method has good performance and high accuracy in SOC estimation for lithium-ion batteries, which facilitates the on-board application in advanced BMS.


Author(s):  
Meng Wei ◽  
Min Ye ◽  
Jia Bo Li ◽  
Qiao Wang ◽  
Xin Xin Xu

State of charge (SOC) of the lithium-ion batteries is one of the key parameters of the battery management system, which the performance of SOC estimation guarantees energy management efficiency and endurance mileage of electric vehicles. However, accurate SOC estimation is a difficult problem owing to complex chemical reactions and nonlinear battery characteristics. In this paper, the method of the dynamic neural network is used to estimate the SOC of the lithium-ion batteries, which is improved based on the classic close-loop nonlinear auto-regressive models with exogenous input neural network (NARXNN) model, and the open-loop NARXNN model considering expected output is proposed. Since the input delay, feedback delay, and hidden layer of the dynamic neural network are usually selected by empirically, which affects the estimation performance of the dynamic neural network. To cover this weakness, sine cosine algorithm (SCA) is used for global optimal dynamic neural network parameters. Then, the experimental results are verified to obtain the effectiveness and robustness of the proposed method under different conditions. Finally, the dynamic neural network based on SCA is compared with unscented Kalman filter (UKF), back propagation neural network based on particle swarm optimization (BPNN-PSO), least-squares support vector machine (LS-SVM), and Gaussian process regression (GPR), the results show that the proposed dynamic neural network based on SCA is superior to other methods.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 321 ◽  
Author(s):  
Xin Lai ◽  
Wei Yi ◽  
Yuejiu Zheng ◽  
Long Zhou

In this paper, a novel model parameter identification method and a state-of-charge (SOC) estimator for lithium-ion batteries (LIBs) are proposed to improve the global accuracy of SOC estimation in the all SOC range (0–100%). Firstly, a subregion optimization method based on particle swarm optimization is developed to find the optimal model parameters of LIBs in each subregion, and the optimal number of subregions is investigated from the perspective of accuracy and computation time. Then, to solve the problem of a low accuracy of SOC estimation caused by large model error in the low SOC range, an improved extended Kalman filter (IEKF) algorithm with variable noise covariance is proposed. Finally, the effectiveness of the proposed methods are verified by experiments on two kinds of batteries under three working cycles, and case studies show that the proposed IEKF has better accuracy and robustness than the traditional extended Kalman filter (EKF) in the all SOC range.


Sign in / Sign up

Export Citation Format

Share Document