Generalized Flight Delay Prediction Method Using Gradient Boosting Decision Tree

Author(s):  
Fan Liu ◽  
Jinlong Sun ◽  
Miao Liu ◽  
Jie Yang ◽  
Guan Gui
2021 ◽  
Vol 16 (3) ◽  
pp. 285-296
Author(s):  
Y.D. Zhang ◽  
L. Liao ◽  
Q. Yu ◽  
W.G. Ma ◽  
K.H. Li

Accurate prediction of train delay is an important basis for the intelligent adjustment of train operation plans. This paper proposes a train delay prediction model that considers the delay propagation feature. The model consists of two parts. The first part is the extraction of delay propagation feature. The best delay classification scheme is determined through the clustering method of delay types for historical data based on the density-based spatial clustering of applications with noise algorithm (DBSCAN), and combining the best delay classification scheme and the k-nearest neighbor (KNN) algorithm to design the classification method of delay type for online data. The delay propagation factor is used to quantify the delay propagation relationship, and on this basis, the horizontal and vertical delay propagation feature are constructed. The second part is the delay prediction, which takes the train operation status feature and delay propagation feature as input feature, and use the gradient boosting decision tree (GBDT) algorithm to complete the prediction. The model was tested and simulated using the actual train operation data, and compared with random forest (RF), support vector regression (SVR) and multilayer perceptron (MLP). The results show that considering the delay propagation feature in the train delay prediction model can further improve the accuracy of train delay prediction. The delay prediction model proposed in this paper can provide a theoretical basis for the intelligentization of railway dispatching, enabling dispatchers to control delays more reasonably, and improve the quality of railway transportation services.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Maryam Farshchian Yazdi ◽  
Seyed Reza Kamel ◽  
Seyyed Javad Mahdavi Chabok ◽  
Maryam Kheirabadi

AbstractFlight delay is inevitable and it plays an important role in both profits and loss of the airlines. An accurate estimation of flight delay is critical for airlines because the results can be applied to increase customer satisfaction and incomes of airline agencies. There have been many researches on modeling and predicting flight delays, where most of them have been trying to predict the delay through extracting important characteristics and most related features. However, most of the proposed methods are not accurate enough because of massive volume data, dependencies and extreme number of parameters. This paper proposes a model for predicting flight delay based on Deep Learning (DL). DL is one of the newest methods employed in solving problems with high level of complexity and massive amount of data. Moreover, DL is capable to automatically extract the important features from data. Furthermore, due to the fact that most of flight delay data are noisy, a technique based on stack denoising autoencoder is designed and added to the proposed model. Also, Levenberg-Marquart algorithm is applied to find weight and bias proper values, and finally the output has been optimized to produce high accurate results. In order to study effect of stack denoising autoencoder and LM algorithm on the model structure, two other structures are also designed. First structure is based on autoencoder and LM algorithm (SAE-LM), and the second structure is based on denoising autoencoder only (SDA). To investigate the three models, we apply the proposed model on U.S flight dataset that it is imbalanced dataset. In order to create balance dataset, undersampling method are used. We measured precision, accuracy, sensitivity, recall and F-measure of the three models on two cases. Accuracy of the proposed prediction model analyzed and compared to previous prediction method. results of three models on both imbalanced and balanced datasets shows that precision, accuracy, sensitivity, recall and F-measure of SDA-LM model with imbalanced and balanced dataset is improvement than SAE-LM and SDA models. The results also show that accuracy of the proposed model in forecasting flight delay on imbalanced and balanced dataset respectively has greater than previous model called RNN.


Author(s):  
B. A. Dattaram ◽  
N. Madhusudanan

Flight delay is a major issue faced by airline companies. Delay in the aircraft take off can lead to penalty and extra payment to airport authorities leading to revenue loss. The causes for delays can be weather, traffic queues or component issues. In this paper, we focus on the problem of delays due to component issues in the aircraft. In particular, this paper explores the analysis of aircraft delays based on health monitoring data from the aircraft. This paper analyzes and establishes the relationship between health monitoring data and the delay of the aircrafts using exploratory analytics, stochastic approaches and machine learning techniques.


Aerospace ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 152
Author(s):  
Micha Zoutendijk ◽  
Mihaela Mitici

The problem of flight delay prediction is approached most often by predicting a delay class or value. However, the aviation industry can benefit greatly from probabilistic delay predictions on an individual flight basis, as these give insight into the uncertainty of the delay predictions. Therefore, in this study, two probabilistic forecasting algorithms, Mixture Density Networks and Random Forest regression, are applied to predict flight delays at a European airport. The algorithms estimate well the distribution of arrival and departure flight delays with a Mean Absolute Error of less than 15 min. To illustrate the utility of the estimated delay distributions, we integrate these probabilistic predictions into a probabilistic flight-to-gate assignment problem. The objective of this problem is to increase the robustness of flight-to-gate assignments. Considering probabilistic delay predictions, our proposed flight-to-gate assignment model reduces the number of conflicted aircraft by up to 74% when compared to a deterministic flight-to-gate assignment model. In general, the results illustrate the utility of considering probabilistic forecasting for robust airport operations’ optimization.


Sign in / Sign up

Export Citation Format

Share Document