scholarly journals Smart Decode-and-Forward Relaying with Polar Codes

2014 ◽  
Vol 3 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Dimitrios S. Karas ◽  
Koralia N. Pappi ◽  
George K. Karagiannidis
2013 ◽  
Vol 303-306 ◽  
pp. 1974-1983
Author(s):  
Bin Duo ◽  
Zhen Yong Wang ◽  
Xue Mai Gu

A cooperative partial message relaying (CPMR) scheme based on distributed polar codes (DPC) is proposed to achieve the maximal decode-and-forward (DF) rate of the stochastically degraded symmetric binary-input two-relay network with orthogonal receiver components (TRN-ORCs). In the proposed scheme, the code design problem of the degraded TRN-ORCs is transformed into a problem of polar codes with CPMR protocol. According to the nested structure of polar codes, the messages transmitted by the source and the first relay are recovered successfully at the two relays, respectively, and then the two relays yield correct partial messages for transmission to solve the uncertainty of the source message at the destination. With the help of the CPMR protocol, the destination should be able to reconstruct the source message correctly. In addition to the practical consideration of the construction of the CPMR protocol based on DPC, we also derived that the block error probability of the proposed scheme can be upper bounded by O(2-Nβ) for any constant β (0 < β < ½), and sufficiently large block length N.


Algorithms ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 218 ◽  
Author(s):  
Marco Mondelli ◽  
S. Hamed Hassani ◽  
Rüdiger Urbanke

We consider the primitive relay channel, where the source sends a message to the relay and to the destination, and the relay helps the communication by transmitting an additional message to the destination via a separate channel. Two well-known coding techniques have been introduced for this setting: decode-and-forward and compress-and-forward. In decode-and-forward, the relay completely decodes the message and sends some information to the destination; in compress-and-forward, the relay does not decode, and it sends a compressed version of the received signal to the destination using Wyner–Ziv coding. In this paper, we present a novel coding paradigm that provides an improved achievable rate for the primitive relay channel. The idea is to combine compress-and-forward and decode-and-forward via a chaining construction. We transmit over pairs of blocks: in the first block, we use compress-and-forward; and, in the second block, we use decode-and-forward. More specifically, in the first block, the relay does not decode, it compresses the received signal via Wyner–Ziv, and it sends only part of the compression to the destination. In the second block, the relay completely decodes the message, it sends some information to the destination, and it also sends the remaining part of the compression coming from the first block. By doing so, we are able to strictly outperform both compress-and-forward and decode-and-forward. Note that the proposed coding scheme can be implemented with polar codes. As such, it has the typical attractive properties of polar coding schemes, namely, quasi-linear encoding and decoding complexity, and error probability that decays at super-polynomial speed. As a running example, we take into account the special case of the erasure relay channel, and we provide a comparison between the rates achievable by our proposed scheme and the existing upper and lower bounds.


2017 ◽  
Vol 14 (8) ◽  
pp. 22-32 ◽  
Author(s):  
Fangliao Yang ◽  
Kai Niu ◽  
Chao Dong ◽  
Baoyu Tian

2020 ◽  
Vol E103.B (1) ◽  
pp. 43-51 ◽  
Author(s):  
Yuhuan WANG ◽  
Hang YIN ◽  
Zhanxin YANG ◽  
Yansong LV ◽  
Lu SI ◽  
...  

Author(s):  
R. A. Morozov ◽  
P. V. Trifonov

Introduction:Practical implementation of a communication system which employs a family of polar codes requires either to store a number of large specifications or to construct the codes by request. The first approach assumes extensive memory consumption, which is inappropriate for many applications, such as those for mobile devices. The second approach can be numerically unstable and hard to implement in low-end hardware. One of the solutions is specifying a family of codes by a sequence of subchannels sorted by reliability. However, this solution makes it impossible to separately optimize each code from the family.Purpose:Developing a method for compact specifications of polar codes and subcodes.Results:A method is proposed for compact specification of polar codes. It can be considered a trade-off between real-time construction and storing full-size specifications in memory. We propose to store compact specifications of polar codes which contain frozen set differences between the original pre-optimized polar codes and the polar codes constructed for a binary erasure channel with some erasure probability. Full-size specification needed for decoding can be restored from a compact one by a low-complexity hardware-friendly procedure. The proposed method can work with either polar codes or polar subcodes, allowing you to reduce the memory consumption by 15–50 times.Practical relevance:The method allows you to use families of individually optimized polar codes in devices with limited storage capacity. 


2014 ◽  
Author(s):  
David Wasserman
Keyword(s):  

Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang V. Nguyen

Objective: In this paper, Decode-and-Forward (DF) mode is deployed in the Relay Selection (RS) scheme to provide better performance in cooperative downlink Non-orthogonal Multiple Access (NOMA) networks. In particular, evaluation regarding the impact of the number of multiple relays on outage performance is presented. Methods: As main parameter affecting cooperative NOMA performance, we consider the scenario of the fixed power allocations and the varying number of relays. In addition, the expressions of outage probabilities are the main metric to examine separated NOMA users. By matching related results between simulation and analytical methods, the exactness of derived formula can be verified. Results: The intuitive main results show that in such cooperative NOMA networks, the higher the number of relays equipped, the better the system performance can be achieved. Conclusion: DF mode is confirmed as a reasonable selection scheme to improve the transmission quality in NOMA. In future work, we will introduce new relay selections to achieve improved performance.


Sign in / Sign up

Export Citation Format

Share Document