On energy efficiency of cooperative communications in wireless body area network

Author(s):  
Xigang Huang ◽  
Hangguan Shan ◽  
Xuemin Shen
Author(s):  
Subono . ◽  
M. Udin Harun Al Rasyid ◽  
I Gede Puja Astawa

ZigBee applications of IEEE 802.15.4 Wireless Sensor Network (WSN) with Low Rate Wireless Personal Area Network (LR-WPAN) can be integrated with e-health technology Wireless Body Area Network (WBAN). WBAN are small size and can communicate quickly making it easier for people to obtain information accurately.WBAN has a variety of functions that can help human life. It can be used in the e-health, military and sports. WBAN has the potential to be the future of wireless communication solutions. WBAN use battery as its primary power source. WBAN has limited energy and must be able to save energy consumption in order to operate for a long time. In this study, we propose a method of time scheduling called cycle sleep period (CSP) as WBAN solutions to save energy and improve energy efficiency. The CSP method is implemented in the real hardware testbed using sensor e-health includes temperature body and current sensor. We compared the performance of CSP method with duty cycle management (DCM) time scheduling-based and without using time scheduling.From the measurement results, our proposed idea has decreasingenergy consumption.Keywords: WSN, LR-WPAN, WBAN, e-health, Time Scheduling


2019 ◽  
Vol 15 (1) ◽  
pp. 155014771881584 ◽  
Author(s):  
Abdullahi Ibrahim Abdu ◽  
Oguz Bayat ◽  
Osman Nur Ucan

Wireless body area network is a type of wireless sensor network that enables efficient healthcare system. To minimize frequent sensor replacement due to resource restrictions, it is necessary to improve energy efficiency in wireless body area network. This article deals with energy efficiency and quality-of-service improvement together in novel wireless body area network architecture. A novel wireless body area network architecture is designed with dual sink nodes in order to minimize delay and energy consumption. A novel insistence-aware medium access control protocol which is aware of criticality of sensed data is presented in the proposed wireless body area network. Prior knowledge-based weighted routing algorithm is responsible to select optimal route for data transmission. In prior knowledge-based weighted routing, weight value is computed by considering significant metrics such as residual energy, link stability, distance, and delay in order to improve energy efficiency and quality of service in the network. Energy consumption is further minimized by incorporating graph-based sleep scheduling algorithm. In graph-based sleep scheduling, criticality of sensor node is also considered as major metric. In coordinator, split and map–based neural network classifier is involved to perform packet classification. After classification, packets are assigned to corresponding sink node according to packet type. Then, throughput and delay metrics are improved by frame aggregation process which is involved in sink node. Extensive simulation in OMNeT++ shows better performance in network lifetime, throughput, residual energy, dropped packets, and delay.


2019 ◽  
Vol 16 (12) ◽  
pp. 5055-5062
Author(s):  
Shaik Mahammad Rasool ◽  
Abdul Wasay Mudasser ◽  
Shad Aqueel Ahmed Abdul Gafoor

In the present era the use of e-health plays a major role in the field of medical science. Today a significant attraction interest is towards Wireless Body area network (WBAN). The major challenges of Wireless Body area network (WBAN) technique are to maintain the quality service and to track the network stability for a longer time, e.g., probability of delivery, and latency. The main important issue is to maintain the energy efficiency within the formed network. Here we propose a protocol for WBANs based on MAC using the multi-dimension (MD) graph optimization to compromise the energy consumption and QoS in data transmission. In WBANs, low battery performing on-body or inculcate biomedical sensor nodes are applicable to observe and gathers the physiological signals like body temperature, blood pressure, ECG and EEG. The MAC protocol design utilizes an optimization algorithm to optimize the scheduled traffic and channel of WBAN. The proposed protocol simulation results will be better than TDMA, CA-MAC and IEEE 802.15.6 MAC in terms of energy efficiency and QoS for large network conditions.


Author(s):  
Shilpa Shinde ◽  
Santosh Sonavane

Background and objective: In the Wireless Body Area Network (WBAN) sensors are placed on the human body; which has various mobility patterns like seating, walking, standing and running. This mobility typically assisted with hand and leg movements on which most of the sensors are mounted. Previous studies were largely focused on simulations of WBAN mobility without focusing much on hand and leg movements. Thus for realistic studies on performance of the WBAN, it is important to consider hand and leg movements. Thus, an objective of this paper is to investigate an effect of the mobility patterns with hand movements on the throughput of the WBAN. Method: The IEEE 802.15.6 requirements are considered for WBAN design. The WBAN with star topology is used to connect three sensors and a hub. Three types of mobility viz. standing, walking and running with backward and forward hand movements is designed for simulation purpose. The throughput analysis is carried out with the three sets of simulations with standing, walking and running conditions with the speed of 0 m/s, 0.5 m/s and 3 m/s respectively. The data rate was increased from 250 Kb to 10000 Kb with AODV protocol. It is intended to investigate the effect of the hand movements and the mobility conditions on the throughput. Simulation results are analyzed with the aid of descriptive statistics. A comparative analysis between the simulated model and a mathematical model is also introduced to get more insight into the data. Results: Simulation studies showed that as the data rate is increased, throughput is also increased for all mobility conditions however, this increasing trend was discontinuous. In the standing (static) position, the throughput is found to be higher than mobility (dynamic) condition. It is found that, the throughput is better in the running condition than the walking condition. Average values of the throughput in case of the standing condition were more than that of the dynamic conditions. To validate these results, a mathematical model is created. In the mathematical model, a same trend is observed. Conclusion: Overall, it is concluded that the throughput is decreased due to mobility of the WBAN. It is understood that mathematical models have given more insight into the simulation data and confirmed the negative effect of the mobility conditions on throughput. In the future, it is proposed to investigate effect of interference on the designed network and compare the results.


Sign in / Sign up

Export Citation Format

Share Document