Intrinsic Mechanism of Drain-Lag and Current Collapse in GaN-Based HEMTs

Author(s):  
W. D. Hu ◽  
X. S. Chen ◽  
W. Lu
2000 ◽  
Vol 622 ◽  
Author(s):  
Xiaozhong Dang ◽  
Peter M. Asbeck ◽  
Edward T. Yu ◽  
Karim S. Boutros ◽  
Joan M. Redwing

ABSTRACTCurrent collapse effects in an Al0.25Ga0.75N/GaN HFET have been investigated under pulsed bias conditions, and a detailed investigation of current responses to changes in drain or gate bias voltage (drain-lag and gate-lag, respectively) has been performed. Three components of transient current response to changes in drain and gate bias voltages are distinguished. Surface treatment using KOH etching and the influence of pulsed bias conditions on threshold voltage are investigated to explore the origins of traps associated with each current transient component.


2003 ◽  
Vol 764 ◽  
Author(s):  
B. Luo ◽  
F. Ren ◽  
M. A. Mastro ◽  
D. Tsvetkov ◽  
A. Pechnikov ◽  
...  

AbstractHigh quality undoped AlGaN/GaN high electron mobility transistors(HEMTs) structures have been gorwn by Hydride Vapor Phase Epitaxy (HVPE). The morphology of the films grown on Al2O3 substrates is excellent with root-mean-square roughness of ∼0.2nm over 10×10μm2 measurement area. Capacitance-voltage measurements show formation of dense sheet of charge at the AlGaN/GaN interface. HEMTs with 1μm gate length fabricated on these structures show transconductances in excess of 110 mS/mm and drain-source current above 0.6A/mm. Gate lag measurements show similar current collapse characteristics to HEMTs fabricated in MBE- or MOCVD grown material.


2017 ◽  
Vol 49 (6) ◽  
pp. 783 ◽  
Author(s):  
Yan WANG ◽  
Zhenchao LIN ◽  
Bowen HOU ◽  
Shijin SUN

Author(s):  
Yonis Fornazier Filho ◽  
Ana Caroliny Carvalho da Cruz ◽  
Rolando Pedicini ◽  
José Ricardo Cezar Salgado ◽  
Priscilla Paiva Luz ◽  
...  

AbstractPhysical and electrochemical properties of Pd catalysts combined with Ru and Mo on carbon support were investigated. To this end, Pd, Pd1.3Ru1.0, Pd3.2Ru1.3Mo1.0 and Pd1.5Ru0.8Mo1.0 were synthesized on Carbon Vulcan XC72 support by the method of thermal decomposition of polymeric precursors and then physically and electrochemically characterized. The highest reaction yields are obtained for Pd3.2Ru1.3Mo1.0/C and Pd1.5Ru0.8Mo1.0/C and, as demonstrated by thermal analysis, they also show the smallest metal/carbon ratio compared the other catalysts. XRD (X-ray Diffraction) and Raman analyses show the presence of PdO and RuO2 for the Pd/C and the Pd1.3Ru1.0/C catalysts, respectively, a fact not observed for the Pd3.2Ru1.3 Mo1.0 /C and the Pd1.5Ru0.8Mo1.0/C catalysts. The catalytic activities were tested for the ethanol oxidation in alkaline medium. Cyclic voltammetry (CV) shows Pd1.3Ru1.0/C exhibiting the highest peak of current density, followed by Pd3.2Ru1.3Mo1.0/C, Pd1.5Ru0.8Mo1.0/C and Pd/C. From, chronoamperometry (CA), it is possible to observe the lowest rate of poisoning for the Pd1.3Ru1.0/C, followed by Pd3.2Ru1.3Mo1.0/C, Pd1.5Ru0.8Mo1.0/C and Pd/C. These results suggested that catalytic activity of the binary and the ternary catalysts are improved in comparison with Pd/C. The presence of RuO2 activated the bifunctional mechanism and improved the catalytic activity in the Pd1.3Ru1.0/C catalyst. The addition of Mo in the catalysts enhanced the catalytic activity by the intrinsic mechanism, suggesting a synergistic effect between metals. In summary, we suggest that it is possible to synthesize ternary PdRuMo catalysts supported on Carbon Vulcan XC72, resulting in materials with lower poisoning rates and lower costs than Pd/C. Graphic abstract


2021 ◽  
Author(s):  
Chuan Chen ◽  
Wenqiang Liu ◽  
Jiayin Guo ◽  
Yuanyuan Liu ◽  
Xuelian Liu ◽  
...  

AbstractN6-methyladenosine (m6A) on chromosome-associated regulatory RNAs (carRNAs), including repeat RNAs, plays important roles in tuning the chromatin state and transcription, but the intrinsic mechanism remains unclear. Here, we report that YTHDC1 plays indispensable roles in the self-renewal and differentiation potency of mouse embryonic stem cells (ESCs), which highly depends on the m6A-binding ability. Ythdc1 is required for sufficient rRNA synthesis and repression of the 2-cell (2C) transcriptional program in ESCs, which recapitulates the transcriptome regulation by the LINE1 scaffold. Detailed analyses revealed that YTHDC1 recognizes m6A on LINE1 RNAs in the nucleus and regulates the formation of the LINE1-NCL partnership and the chromatin recruitment of KAP1. Moreover, the establishment of H3K9me3 on 2C-related retrotransposons is interrupted in Ythdc1-depleted ESCs and inner cell mass (ICM) cells, which consequently increases the transcriptional activities. Our study reveals a role of m6A in regulating the RNA scaffold, providing a new model for the RNA-chromatin cross-talk.


Author(s):  
Ji-Xuan Yang ◽  
Dai-Jie Lin ◽  
Yuh-Renn Wu ◽  
Jian-Jang Huang

Sign in / Sign up

Export Citation Format

Share Document