Key technologies analysis of small scale non-grid-connected wind turbines: A review

Author(s):  
Wei Liang ◽  
Weiguo Liu



Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.



2006 ◽  
Vol 306-308 ◽  
pp. 851-856
Author(s):  
C.Y. Son ◽  
H.I. Byun ◽  
K.H. Kim ◽  
J.K. Choi ◽  
J.Y. Shin

In these days, large-scale wind turbines are being made of the Glass Fiber Reinforced Plastic (hereinafter F.R.P). Some reinforcement stiffeners such as carbon fiber and polyamide (Kevlar) are not economical for the wind turbine. In addition, the steel or aluminum alloy, featuring heavy weight and metallic fatigue load, is not suitable for global use, except very small-scale wind turbines. In this study, we manufactured a 10kW-grade small Rotor Blade with the F. R. P featuring high stiffness and good dynamic behavior characteristic, and carried out experiments for understanding the bending behavior characteristic of the fatigue load and bending load. And, we examined the experiment results through the Finite Element Method. We compared the experiment results and FEM analysis outputs using the commercial ANSYS FEM program.



Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 35 ◽  
Author(s):  
Francesco Castellani ◽  
Davide Astolfi ◽  
Mauro Peppoloni ◽  
Francesco Natili ◽  
Daniele Buttà ◽  
...  

In the recent years, distributed energy production has been one of the main research topics about renewable energies. The decentralization of electric production from wind resources raises the issues of reducing the size of generators, from the MW scale of industrial wind farm turbines to the kW scale, and possibly employing them in urban areas, where the wind flow is complex and extremely turbulent because of the presence of buildings and obstacles. On these grounds, the use of small-scale vertical axis small wind turbines (VASWT) is a valid choice for on-site generation (OSG), considering their low sensitivity with respect to turbulent flow and that there is no need to align the turbine with wind direction, as occurs with horizontal axis small wind turbines (HASWT). In addition, VASWTs have a minor acoustic impact with respect to HASWTs. The aim of this paper is to study the interactions that take place between a 1.2 kW, vertical axis, Darrieus VASWT turbine and a small, experimental building, in order to analyze the noise and the vibrations transmitted to the structure. One method to damp the vibrations is then assessed through spectral analysis of data acquired through accelerometers located both in the mast of the wind turbine and at the building walls. The results confirm the usefulness of dampers to increase the building comfort regarding vibrations.



Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1870 ◽  
Author(s):  
Lidong Zhang ◽  
Kaiqi Zhu ◽  
Junwei Zhong ◽  
Ling Zhang ◽  
Tieliu Jiang ◽  
...  

The central shaft is an important and indispensable part of a small scale urban vertical axis wind turbines (VAWTs). Normally, it is often operated at the same angular velocity as the wind turbine. The shedding vortices released by the rotating shaft have a negative effect on the blades passing the wake of the wind shaft. The objective of this study is to explore the influence of the wake of rotating shaft on the performance of the VAWT under different operational and physical parameters. The results show that when the ratio of the shaft diameter to the wind turbine diameter (α) is 9%, the power loss of the wind turbine in one revolution increases from 0% to 25% relative to that of no-shaft wind turbine (this is a numerical experiment for which the shaft of the VAWT is removed in order to study the interactions between the shaft and blade). When the downstream blades pass through the wake of the shaft, the pressure gradient of the suction side and pressure side is changed, and an adverse effect is also exerted on the lift generation in the blades. In addition, α = 5% is a critical value for the rotating shaft wind turbine (the lift-drag ratio trend of the shaft changes differently). In order to figure out the impacts of four factors; namely, tip speed ratios (TSRs), α, turbulence intensity (TI), and the relative surface roughness value (ks/ds) on the performance of a VAWT system, the Taguchi method is employed in this study. The influence strength order of these factors is featured by TSRs > ks/ds > α > TI. Furthermore, within the range we have analyzed in this study, the optimal power coefficient (Cp) occurred under the condition of TSR = 4, α = 5%, ks/ds = 1 × 10−2, and TI = 8%.





Sign in / Sign up

Export Citation Format

Share Document