Time-varying formation tracking control for multi-UAV systems with nonsingular fast terminal sliding mode

Author(s):  
Tianyi Xiong ◽  
Zhiqiang Pu ◽  
Jianqiang Yi
2021 ◽  
Vol 111 ◽  
pp. 106549
Author(s):  
Jianhua Wang ◽  
Liang Han ◽  
Xiwang Dong ◽  
Qingdong Li ◽  
Zhang Ren

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1416
Author(s):  
Guang-Hui Xu ◽  
Meng Li ◽  
Jie Chen ◽  
Qiang Lai ◽  
Xiao-Wen Zhao

This paper investigates formation tracking control for multi-agent networks with fixed time convergence. The control task is that the follower agents are required to form a prescribed formation within a fixed time and the geometric center of the formation moves in sync with the leader. First, an error system is designed by using the information of adjacent agents and a new control protocol is designed based on the error system and terminal sliding mode control (TSMC). Then, via employing the Lyapunov stability theorem and the fixed time stability theorem, the control task is proved to be possible within a fixed time and the convergence time can be calculated by parameters. Finally, numerical results illustrate the feasibility of the proposed control protocol.


2019 ◽  
Vol 2019 ◽  
pp. 1-17
Author(s):  
Siyi Chen ◽  
Wei Liu ◽  
Huixian Huang

Aiming at the tracking control problem of a class of uncertain nonlinear systems, a nonsingular fast terminal sliding mode control scheme combining RBF network and disturbance observer is proposed. The sliding mode controller is designed by using nonsingular fast terminal sliding mode and second power reaching law to solve the problem of singularity and slow convergence in traditional terminal sliding mode control. By using the universal approximation of RBF network, the unknown nonlinear function of the system is approximated, and the disturbance observer is designed by using the hyperbolic tangent nonlinear tracking differentiator (TANH-NTD) to estimate the interference of the system and enhance the robustness of the system. The stability of the system is proved by the Lyapunov principle. The numerical simulation results show that the method can shorten the system arrival time, improve the tracking accuracy, and suppress the chattering phenomenon.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Juntao Fei ◽  
Zhe Wang ◽  
Xiao Liang

In this paper, a robust adaptive fractional fast terminal sliding mode controller is introduced into the microgyroscope for accurate trajectory tracking control. A new fast terminal switching manifold is defined to ensure fast finite convergence of the system states, where a fractional-order differentiation term emerges into terminal sliding surface, which additionally generates an extra degree of freedom and leads to better performance. Adaptive algorithm is applied to estimate the damping and stiffness coefficients, angular velocity, and the upper bound of the lumped nonlinearities. Numerical simulations are presented to exhibit the validity of the proposed method, and the comparison with the other two methods illustrates its superiority.


Sign in / Sign up

Export Citation Format

Share Document