scholarly journals Study of the stability and unfolding mechanism of BBA1 by molecular dynamics simulations at different temperatures

1999 ◽  
Vol 8 (6) ◽  
pp. 1292-1304 ◽  
Author(s):  
Lu Wang ◽  
Yong Duan ◽  
Rebecca Shortle ◽  
Barbara Imperiali ◽  
Peter A. Kollman
2017 ◽  
Vol 4 (10) ◽  
pp. 1679-1690 ◽  
Author(s):  
Hamed Akbarzadeh ◽  
Esmat Mehrjouei ◽  
Amir Nasser Shamkhali ◽  
Mohsen Abbaspour ◽  
Sirous Salemi ◽  
...  

Molecular dynamics simulations were used to investigate the structural evolution and thermal behavior of Ni–Pd hollow nanoparticles.


2020 ◽  
Vol 978 ◽  
pp. 428-435
Author(s):  
Krishna Chaitanya Katakam ◽  
Natraj Yedla

The mechanical properties and deformation mechanism of nickel nanowire of dimension 100 Å (x-axis) × 1000 Å (y-axis) × 100 Å (z-axis) containing a single linear surface defect is studied at different temperatures using molecular dynamics simulations. The defect is created by deleting a row of atoms on the surface and is inclined at 25° to the loading axis. The tensile test is carried out at 0.01 K, 10 K, 100 K and 300 K temperature and 108 s-1strain rate. To determine the effect of temperature on the stress-strain curves, fracture and failure mechanism, a thorough investigation has taken place. Maximum strength of 21.26 GPa is observed for NW deformed at 0.01 K temperature and the strength decreased with increase in temperature. Through slip lines, the deformation relief pattern taken place by developing the extrusion areas along with intrusion over the surface defect area in all NWs deformed at respective temperatures. Further it is observed that fracture strains decrease with increase in temperature. After yielding, stacking faults associated with dislocations are generated by slip on all four {111} planes. Different type of dislocations with both intrinsic and extrinsic stacking faults are noticed. Out of all dislocation densities, Shockley partial dislocation densities has recorded a maximum value.


2017 ◽  
Vol 19 (24) ◽  
pp. 15933-15941 ◽  
Author(s):  
Xinyu Wang ◽  
Jingchao Zhang ◽  
Yue Chen ◽  
Paddy K. L. Chan

We investigate the thermal transport across graphene and an organic semiconductor at different temperatures, levels of hydrogenation and vacancies.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 355-359 ◽  
Author(s):  
MATUKUMILLI. V. D. PRASAD ◽  
BAIDURYA BHATTACHARYA

Effect of vacancy and Stone–Wales defects on the oscillatory behavior of (5,5)/(10,10) carbon nanotube-based oscillator are studied using NVE molecular dynamics simulations. Results show that defects reduce stability of the oscillators. Effect of single vacancy defect on stability is very small, whereas Stone–Wales defect considerably reduces the stability thereby damping the oscillations quickly. Further increase in density of vacancy defects causes a monotonic decrease of stability of oscillator. In all cases the initial temperature (1 and 300 K) had almost no effect on the oscillation stability.


Sign in / Sign up

Export Citation Format

Share Document