Fuel for the pace of life: Baseline blood glucose concentration co-evolves with life-history traits in songbirds

2018 ◽  
Vol 33 (2) ◽  
pp. 239-249 ◽  
Author(s):  
Oldrich Tomasek ◽  
Lukas Bobek ◽  
Tereza Kralova ◽  
Marie Adamkova ◽  
Tomas Albrecht
2022 ◽  
Author(s):  
Oldřich Tomášek ◽  
Lukáš Bobek ◽  
Tereza Kauzálová ◽  
Ondřej Kauzál ◽  
Marie Adámková ◽  
...  

Macrophysiological research is vital to our understanding of mechanisms underpinning global life history variation and adaptation under diverse environments. Birds represent an important model taxon in this regard, yet our knowledge is limited to only a few physiological traits, mostly studied in temperate and Neotropical species. Here, we examined latitudinal and elevational variation in an emerging biomarker of physiological pace of life, blood glucose concentration, collected from 61 European temperate and 99 Afrotropical passerine species. Our data suggest that the slow physiological pace-of-life syndrome, indicated by lower baseline glucose level and stronger stress response, evolves convergently in lowland tropical birds across continents and is shaped by their low fecundity. In contrast, elevational variation in blood glucose levels implied a unique montane pace-of-life syndrome combining slow-paced life histories with fast-paced physiology. The observed patterns suggest an unequal importance of life history in shaping physiological adaptations associated with latitude and elevation.


2014 ◽  
Vol 307 (4) ◽  
pp. H587-H597 ◽  
Author(s):  
Mark W. Sims ◽  
James Winter ◽  
Sean Brennan ◽  
Robert I. Norman ◽  
G. André Ng ◽  
...  

While it is well established that mortality risk after myocardial infarction (MI) increases in proportion to blood glucose concentration at the time of admission, it is unclear whether there is a direct, causal relationship. We investigated potential mechanisms by which increased blood glucose may exert cardiotoxicity. Using a Wistar rat or guinea-pig isolated cardiomyocyte model, we investigated the effects on cardiomyocyte function and electrical stability of alterations in extracellular glucose concentration. Contractile function studies using electric field stimulation (EFS), patch-clamp recording, and Ca2+ imaging were used to determine the effects of increased extracellular glucose concentration on cardiomyocyte function. Increasing glucose from 5 to 20 mM caused prolongation of the action potential and increased both basal Ca2+ and variability of the Ca2+ transient amplitude. Elevated extracellular glucose concentration also attenuated the protection afforded by ischemic preconditioning (IPC), as assessed using a simulated ischemia and reperfusion model. Inhibition of PKCα and β, using Gö6976 or specific inhibitor peptides, attenuated the detrimental effects of glucose and restored the cardioprotected phenotype to IPC cells. Increased glucose concentration did not attenuate the cardioprotective role of PKCε, but rather activation of PKCα and β masked its beneficial effect. Elevated extracellular glucose concentration exerts acute cardiotoxicity mediated via PKCα and β. Inhibition of these PKC isoenzymes abolishes the cardiotoxic effects and restores IPC-mediated cardioprotection. These data support a direct link between hyperglycemia and adverse outcome after MI. Cardiac-specific PKCα and β inhibition may be of clinical benefit in this setting.


2014 ◽  
Vol 19 (3) ◽  
pp. 527-533 ◽  
Author(s):  
Miho Senda ◽  
Susumu Ogawa ◽  
Kazuhiro Nako ◽  
Masashi Okamura ◽  
Takuya Sakamoto ◽  
...  

Author(s):  
Li-Nong Ji ◽  
Li-Xin Guo ◽  
Li-Bin Liu

AbstractBlood glucose self-monitoring by individuals with diabetes is essential in controlling blood glucose levels. The International Organization for Standardization (ISO) introduced new standards for blood glucose monitoring systems (BGMS) in 2013 (ISO 15197: 2013). The CONTOUR PLUSThis study evaluated the accuracy and precision of CONTOUR PLUS BGMS in quantitative glucose testing of capillary and venous whole blood samples obtained from 363 patients at three different hospitals.Results of fingertip and venous blood glucose measurements by the CONTOUR PLUS system were compared with laboratory reference values to determine accuracy. Accuracy was 98.1% (96.06%–99.22%) for fingertip blood tests and 98.1% (96.02%–99.21%) for venous blood tests. Precision was evaluated across a wide range of blood glucose values (5.1–17.2 mmol/L), testing three blood samples repeatedly 15 times with the CONTOUR PLUS blood glucose meter using test strips from three lots. All within-lot results met ISO criteria (i.e., SD<0.42 mmol/L for blood glucose concentration <5.55 mmol/L; CV<7.5% for blood glucose concentration ≥5.55 mmol/L). Between-lot variations were 1.5% for low blood glucose concentration, 2.4% for normal and 3.4% for high.Accuracy of both fingertip and venous blood glucose measurements by the CONTOUR PLUS system was >95%, confirming that the system meets ISO 15197: 2013 requirements.


Sign in / Sign up

Export Citation Format

Share Document