Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea

2013 ◽  
Vol 16 (10) ◽  
pp. 3012-3029 ◽  
Author(s):  
Anne E. Dekas ◽  
Grayson L. Chadwick ◽  
Marshall W. Bowles ◽  
Samantha B. Joye ◽  
Victoria J. Orphan
Author(s):  
Iman Mehdipour ◽  
Gabriel Falzone ◽  
Dale Prentice ◽  
Narayanan Neithalath ◽  
Dante Simonetti ◽  
...  

Optimizing the spatial distribution of contacting gas and the gas processing conditions enhances CO2 mineralization reactions and material properties of carbonate-cementitious monoliths.


2021 ◽  
Vol 10 (3) ◽  
pp. 166
Author(s):  
Hartmut Müller ◽  
Marije Louwsma

The Covid-19 pandemic put a heavy burden on member states in the European Union. To govern the pandemic, having access to reliable geo-information is key for monitoring the spatial distribution of the outbreak over time. This study aims to analyze the role of spatio-temporal information in governing the pandemic in the European Union and its member states. The European Nomenclature of Territorial Units for Statistics (NUTS) system and selected national dashboards from member states were assessed to analyze which spatio-temporal information was used, how the information was visualized and whether this changed over the course of the pandemic. Initially, member states focused on their own jurisdiction by creating national dashboards to monitor the pandemic. Information between member states was not aligned. Producing reliable data and timeliness reporting was problematic, just like selecting indictors to monitor the spatial distribution and intensity of the outbreak. Over the course of the pandemic, with more knowledge about the virus and its characteristics, interventions of member states to govern the outbreak were better aligned at the European level. However, further integration and alignment of public health data, statistical data and spatio-temporal data could provide even better information for governments and actors involved in managing the outbreak, both at national and supra-national level. The Infrastructure for Spatial Information in Europe (INSPIRE) initiative and the NUTS system provide a framework to guide future integration and extension of existing systems.


2017 ◽  
Vol 23 (9) ◽  
pp. 3838-3848 ◽  
Author(s):  
Claudia Pogoreutz ◽  
Nils Rädecker ◽  
Anny Cárdenas ◽  
Astrid Gärdes ◽  
Christian R. Voolstra ◽  
...  

2021 ◽  
Vol 23 (14) ◽  
pp. 8868-8879
Author(s):  
Hanggara Sudrajat ◽  
Mitsunori Kitta ◽  
Ryota Ito ◽  
Tomoko Yoshida ◽  
Ryuzi Katoh ◽  
...  

Unraveling the nanoarchitecture–photoactivity relationship of core–shell-structured La-doped NaTaO3 to tune the surface features, spatial distribution of dopants, and hence water splitting activity.


Author(s):  
Rachel L. Klima ◽  
Noah E. Petro

Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar-wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH − or H 2 O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH − /H 2 O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH − /H 2 O absorption band strengths that differ from their immediate surroundings. This article is part of the themed issue ‘The origin, history and role of water in the evolution of the inner Solar System’.


Sign in / Sign up

Export Citation Format

Share Document