TGF-β1 Gene Expression in Cultured Human Keratinocytes Does Not Decrease With Biologic Age

1994 ◽  
Vol 103 (1) ◽  
pp. 127-133 ◽  
Author(s):  
Carolyn Compton ◽  
Yiai Tong ◽  
Nathan Trookman ◽  
Huifen Zhao ◽  
Dawn Roy
2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 151.2-152
Author(s):  
E. Pachera ◽  
G. Kania ◽  
A. Juengel ◽  
M. Calcagni ◽  
O. Distler

Background:Traditional preclinical approaches, such as two-dimensional cell culture and animal models, are often inadequate to mimic the pathophysiological features of complex diseases such as systemic sclerosis (SSc). Human specific targets, such as the recently described pro-fibrotic long non coding RNA (lncRNA) H19X1, are becoming increasingly relevant in preclinical research, creating the need of new strategies and tools in translational medicine. The employment of novel three-dimensional (3D) culture systems, where multiple cell types are included, is filling an important gap left by the traditional preclinical methods.Objectives:To develop an easy to produce 3D fibrotic skin microtissues model for translational proof of concept studies.Methods:Two thousand five hundred dermal fibroblasts isolated from skin of SSc patients were seeded in ultra-low attachment 96-well plates. Fibroblast were let to aggregate into spheres for 48h. Two thousand five hundred primary normal human keratinocytes were added to the culture and let to layer onto the fibroblast spheres for 72h. H19X silencing experiments were used as proof of concept studies. H19X silencing with antisense oligonucleotides or transfections with a scrambled control were performed in fibroblasts prior to the sphere formation for 24h. TGFβ (10 ng/ml) was added to microtissue to exacerbate the fibrotic phenotype. Haematoxylin eosin staining as well as immunohistochemistry staining for vimentin and cytokeratin 10 was performed. Skin microtissues were processed for RNA and protein isolation. Pro-collagen Iα1 and fibronectin were quantified in the supernatants with ELISA.Results:The microtissues presented a core of SSc fibroblast as revealed by vimentin staining and an external layer of keratinocytes as revealed by cytokeratin 10 staining, mimicking the human skin architecture. Gene expression analysis following TGFβ stimulation displayed induced expression of extracellular matrix gene COL1A1 (p=0.044) and the myofibroblast marker ACTA2 (p=0.018), indicating that the microtissues were able to develop a fibrotic response. Microtissues, where H19X was silenced, displayed reduced gene expression of COL1A1 and ACTA2 after TGFβ stimulation (COL1A1 p=0.007, ACTA2 p=0.045). Additionally, H19X silencing led to lower levels of αSMA protein expression (p=0.009) and pro-collagen1α1 secretion (p=0.039) in the supernatant of the microtissue cultures as revealed by Western Blot and ELISA, respectively. FN1 expression and fibronectin protein levels were not significantly reduced in the microtissues after H19X silencing.Conclusion:We were able to produce a 3D microtissue resembling skin architecture that can respond to fibrotic stimuli. Knockdown experiments of pro-fibrotic lncRNA H19X confirmed the potential of the model as screening platform for novel pro-fibrotic effectors. A future aim will be to optimize the model for high-throughput automated screening platforms.References:[1]Pachera, E., et al. (2020). “Long noncoding RNA H19X is a key mediator of TGF-β–driven fibrosis.” The Journal of Clinical Investigation 130(9): 4888-4905.Disclosure of Interests:Elena Pachera: None declared, Gabriela Kania: None declared, Astrid Juengel: None declared, Maurizio Calcagni Speakers bureau: Arthrex, Consultant of: Medartis, Arthrex, SilkBiomaterials, Grant/research support from: Medartis, Oliver Distler Speakers bureau: Actelion, Bayer, Boehringer Ingelheim, Medscape, Novartis, Roche, Consultant of: Abbvie, Actelion, Acceleron Pharma, Amgen, AnaMar, Arxx Therapeutics, Bayer, Baecon Discovery, Blade Therapeutics, Boehringer, CSL Behring, ChemomAb, Corpuspharma, Curzion Pharmaceuticals, Ergonex, Galapagos NV, GSK, Glenmark Pharmaceuticals, Inventiva, Italfarmaco, iQvia, -Kymera, Medac, Medscape, Mitsubishi Tanabe Pharma, MSD, Roche, Sanofi, UCB, Grant/research support from: Abbvie, Actelion, Bayer, Boehringer Ingelheim, Kymera Therapeutics, Mitsubishi Tanabe


1987 ◽  
Vol 80 (2) ◽  
pp. 430-436 ◽  
Author(s):  
T S Kupper ◽  
A O Chua ◽  
P Flood ◽  
J McGuire ◽  
U Gubler

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryosuke Nakamura ◽  
Shigeyuki Mukudai ◽  
Renjie Bing ◽  
Michael J. Garabedian ◽  
Ryan C. Branski

AbstractSimilar to the hypertrophic scar and keloids, the efficacy of glucorticoids (GC) for vocal fold injury is highly variable. We previously reported dexamethasone enhanced the pro-fibrotic effects of transforming growth factor (TGF)-β as a potential mechanism for inconsistent clinical outcomes. In the current study, we sought to determine the mechanism(s) whereby GCs influence the fibrotic response and mechanisms underlying these effects with an emphasis on TGF-β and nuclear receptor subfamily 4 group A member 1 (NR4A1) signaling. Human VF fibroblasts (HVOX) were treated with three commonly-employed GCs+ /-TGF-β1. Phosphorylation of the glucocorticoid receptor (GR:NR3C1) and activation of NR4A1 was analyzed by western blotting. Genes involved in the fibrotic response, including ACTA2, TGFBR1, and TGFBR2 were analyzed by qPCR. RNA-seq was performed to identify global changes in gene expression induced by dexamethasone. GCs enhanced phosphorylation of GR at Ser211 and TGF-β-induced ACTA2 expression. Dexamethasone upregulated TGFBR1, and TGFBR2 in the presence of TGF-β1 and increased active NR4A1. RNA-seq results confirmed numerous pathways, including TGF-β signaling, affected by dexamethasone. Synergistic pro-fibrotic effects of TGF-β were observed across GCs and appeared to be mediated, at least partially, via upregulation of TGF-β receptors. Dexamethasone exhibited diverse regulation of gene expression including NR4A1 upregulation consistent with the anti-fibrotic potential of GCs.


2000 ◽  
Vol 292 (4) ◽  
pp. 180-187 ◽  
Author(s):  
R. Pfundt ◽  
M. Wingens ◽  
M. Bergers ◽  
M. Zweers ◽  
M. Frenken ◽  
...  

2021 ◽  
pp. 114451
Author(s):  
Manal Zefzoufi ◽  
Rabiaa Fdil ◽  
Hafida Bouamama ◽  
Chemseddoha Gadhi ◽  
Yoshinori Kartakura ◽  
...  

Toxicology ◽  
2001 ◽  
Vol 165 (2-3) ◽  
pp. 225-234 ◽  
Author(s):  
Giuseppe Valacchi ◽  
Gerald Rimbach ◽  
Claude Saliou ◽  
Stefan U Weber ◽  
Lester Packer

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Albert Gao ◽  
Lauren D Black

Cardiac fibrosis following myocardial infarction (MI) leads to reduced cardiac function, and contributes to heart failure and mortality. Recent studies shown the extent of adverse remodeling may be mitigated by therapeutic strategies which regulate cardiac fibroblast mediated-remodeling. Since cross-linking by lysyl oxidase (LOX) increases following MI and alters the mechanical properties of the infarct, it is critical to characterize how its expression is regulated by CFs post-MI. While LOX expression is attributable to TGF-β1 signaling, we hypothesize that changes in the stiffness and composition of the ECM can also alter LOX expression via integrin-mediated signaling. To investigate this, we isolated CFs from healthy left ventricle (LV) and infarcted cardiac fibroblasts (ICFs) from 1 week post-MI LV and cultured them on tissue culture plastic (TCP) and collagen I-coated plates (COL) in serum-free media for 48 hours to assess the expression of genes associated with LOX signaling, fibrosis, and myofibroblast activation. Our results show an upregulation of LOX gene expression in both CFs and ICFs when cultured on COL and this is further emphasized with the presence of TGF-β1 (Fig. 1A). Gene expression of col1α1, integrin β1 subunit and αSMA (Fig. 1B-D) also exhibit similar upregulation. Ongoing studies will investigate how altered substrate stiffness and composition affect gene expression of LOX and other genes associated with fibrosis. By understanding the effect of the physical microenvironment on the expression of fibrotic genes including LOX, we aim to develop novel therapeutic strategies to attenuate cardiac fibrosis and thus improve cardiac recovery following MI.


Sign in / Sign up

Export Citation Format

Share Document