Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila ( Drosophila suzukii )

2018 ◽  
Vol 27 (2) ◽  
pp. 317-335 ◽  
Author(s):  
Thomas Enriquez ◽  
David Ruel ◽  
Maryvonne Charrier ◽  
Hervé Colinet
2016 ◽  
Vol 94 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Rebekah A. Oomen ◽  
Jeffrey A. Hutchings

We employed common-garden experiments to test for genetic variation in responses of larval life-history traits to temperature between two populations of Atlantic cod (Gadus morhua L., 1758) that naturally experience contrasting thermal environments during early life due to spatial and temporal differences in spawning. Southern Gulf of St. Lawrence cod larvae experienced faster growth in warmer water and low, uniform survival across all experimental temperatures (3, 7, 11 °C), consistent with previous studies on this spring-spawning population. In contrast, larvae from fall-spawning Southwestern Scotian Shelf cod collected near Sambro, Nova Scotia, lacked plasticity for growth but experienced much lower survival at higher temperatures. Phenotypes that are positively associated with fitness were observed at temperatures closest to those experienced in the wild, consistent with the hypothesis that these populations are adapted to local thermal regimes. The lack of growth plasticity observed in Sambro cod might be due to costly maintenance of plasticity in stable environments or energy savings at cold temperatures. However, additional experiments need to be conducted on Sambro cod and other fall-spawning marine fishes to determine to what extent responses to projected changes in climate will differ among populations.


2019 ◽  
Author(s):  
Jean-Claude Tourneur ◽  
Joël Meunier

ABSTRACTUnderstanding the mechanisms by which an introduced species adapt to newly encountered habitats is a major question in ecology. A key method to address this question is to collect data on introduced species that have successfully invaded a broad diversity of novel environments, and analyze how their life-history traits changed with these new constraints. Here, we present and analyze such a unique data set in the European earwig Forficula auricularia L, an insect that invaded North America during the last century. We conducted a common garden experiment, in which we measured 13 life-history traits in 4158 individuals from 19 populations across North America. Our results demonstrate that the successful invasion of this species came with changes in 10 of their life-history traits in response to thermal regimes (winter-summer and autumn-spring temperatures), but with no change in response to the overall mean temperatures of the invaded locations. Importantly, we show that some of these changes are by-products of novel thermal regimes, whereas others reflect adaptive strategies of females to these constraints. Overall, our findings reveal the importance of thermal regimes over mean temperatures in climate adaptation, and emphasize that studying adaptive capabilities is crucial to predict the limits of biological invasions.


2020 ◽  
Vol 10 (17) ◽  
pp. 9085-9099
Author(s):  
Aurore D. C. Panel ◽  
Ido Pen ◽  
Bart A. Pannebakker ◽  
Herman H. M. Helsen ◽  
Bregje Wertheim

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 727
Author(s):  
Stella A. Papanastasiou ◽  
Vasilis G. Rodovitis ◽  
Eleni Verykouki ◽  
Evmorfia P. Bataka ◽  
Nikos T. Papadopoulos

Drosophila suzukii is a polyphagous pest of small and soft fruit, originating from Asia, which has spread and established in Europe and the USA. Adults exhibit seasonal phenotypes, i.e., summer morphs (SM) and winter morphs (WM) to cope with fluctuating environmental conditions. WM have a darker cuticle and larger wings compared to SM, while WM females experience reproductive dormancy. We studied the life history traits (lifespan, female reproductive status and number of produced offspring) of WM and SM that were exposed to winter field conditions of a coastal and a mainland agricultural area, with mild and cold winter climates, respectively. Mated adults of each phenotype were individually placed in vials bearing nutritional/oviposition substrate, and transferred to the field from November 2019 to May 2020, when the death of the last individual was recorded. Almost all SM females (90%) and no WM female carried mature ovarioles before being transferred to the field. WM exhibited a longer lifespan than SM adjusting for location and sex. Differences in survival between the two phenotypes were more pronounced for adults kept in the mainland area. The majority of SM females produced offspring during overwintering in the mild coastal area, but only a few SM were reproductively active in the cold mainland area. Some WM females produced progeny during overwintering in the mild conditions of the coastal area, but all WM females were in reproductive arrest in the mainland area. Overwintering females in the coastal area had a shorter lifespan and produced more progeny than those kept in the mainland area. High survival rates of WM provide indications of the successful performance of this phenotype in the adverse conditions of the cold climates. Additionally, the continuous reproductive activity of SM females and the onset of progeny production by WM females during overwintering in the coastal area indicate that the insect remains reproductively active throughout the year in areas with mild climatic conditions. Our findings support the successful adaptation of D. suzukii in both areas tested and can be used for the development of area-specific population models, based on the prevailing climatic conditions.


2017 ◽  
Vol 112 ◽  
pp. 20-27 ◽  
Author(s):  
Marco Valerio Rossi Stacconi ◽  
Aurore Panel ◽  
Nuray Baser ◽  
Claudio Ioriatti ◽  
Tommaso Pantezzi ◽  
...  

2020 ◽  
Vol 650 ◽  
pp. 7-18 ◽  
Author(s):  
HW Fennie ◽  
S Sponaugle ◽  
EA Daly ◽  
RD Brodeur

Predation is a major source of mortality in the early life stages of fishes and a driving force in shaping fish populations. Theoretical, modeling, and laboratory studies have generated hypotheses that larval fish size, age, growth rate, and development rate affect their susceptibility to predation. Empirical data on predator selection in the wild are challenging to obtain, and most selective mortality studies must repeatedly sample populations of survivors to indirectly examine survivorship. While valuable on a population scale, these approaches can obscure selection by particular predators. In May 2018, along the coast of Washington, USA, we simultaneously collected juvenile quillback rockfish Sebastes maliger from both the environment and the stomachs of juvenile coho salmon Oncorhynchus kisutch. We used otolith microstructure analysis to examine whether juvenile coho salmon were age-, size-, and/or growth-selective predators of juvenile quillback rockfish. Our results indicate that juvenile rockfish consumed by salmon were significantly smaller, slower growing at capture, and younger than surviving (unconsumed) juvenile rockfish, providing direct evidence that juvenile coho salmon are selective predators on juvenile quillback rockfish. These differences in early life history traits between consumed and surviving rockfish are related to timing of parturition and the environmental conditions larval rockfish experienced, suggesting that maternal effects may substantially influence survival at this stage. Our results demonstrate that variability in timing of parturition and sea surface temperature leads to tradeoffs in early life history traits between growth in the larval stage and survival when encountering predators in the pelagic juvenile stage.


Sign in / Sign up

Export Citation Format

Share Document