The effects of seed detectability and seed traits on hoarding preference of two rodent species

2021 ◽  
Author(s):  
Minghui WANG ◽  
Xianfeng YI
Keyword(s):  
2013 ◽  
Vol 36 (8) ◽  
pp. 802-811
Author(s):  
Hui-Liang LIU ◽  
Yong-Kuan ZHANG ◽  
Dao-Yuan ZHANG ◽  
Lin-Ke YIN ◽  
Yuan-Ming ZHANG

Crop Science ◽  
2003 ◽  
Vol 43 (2) ◽  
pp. 571 ◽  
Author(s):  
S. K. Stombaugh ◽  
J. H. Orf ◽  
H. G. Jung ◽  
D. A. Somers

2011 ◽  
Vol 39 (No. 3) ◽  
pp. 73-83 ◽  
Author(s):  
O. Horňáková ◽  
M. Závodná ◽  
M. Žáková ◽  
J. Kraic ◽  
F. Debre

The study of diversity in common bean was based on morphological and agronomical characteristics, differentiation of collected accessions by morphological and molecular markers, detection of genetic variation, and duplicates detection in bean landraces. The analysed 82 accessions of common bean (Phaseolus vulgaris L.) were collected in the Western andEastern Carpatien as landrace mixtures. Their seeds were segregated and pooled according to their characteristics; they were further multiplicated, and introduced into the collection. An extensive variation in plant and seed traits was discovered in thirty-three morphological and agronomical characteristics. Nevertheless, some of the accessions were identical in these characteristics. Cluster analysis grouped genotypes into two main branches, reflecting the growth type, seed size parameters, and thousand-seed weight. Molecular differentiation studies were performed by multilocus polymorphism detection in microsatellite and minisatellite DNA regions. Cluster analysis based on molecular data also grouped genotypes but no linkage to morphological traits was revealed. Bean accessions with very similar or identical morphological characters were clearly distinguished by DNA banding patterns. The presence of duplicates was excluded.  


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Wen Wang ◽  
Xian-Dan Lin ◽  
Hai-Lin Zhang ◽  
Miao-Ruo Wang ◽  
Xiao-Qing Guan ◽  
...  

Abstract To better understand the genetic diversity, host associations and evolution of coronaviruses (CoVs) in China we analyzed a total of 696 rodents encompassing 16 different species sampled from Zhejiang and Yunnan provinces. Based on reverse transcriptase PCR-based CoV screening of fecal samples and subsequent sequence analysis of the RNA-dependent RNA polymerase gene, we identified CoVs in diverse rodent species, comprising Apodemus agrarius, Apodemus chevrieri, Apodemus latronum, Bandicota indica, Eothenomys cachinus, Eothenomys miletus, Rattus andamanensis, Rattus norvegicus, and Rattus tanezumi. CoVs were particularly commonplace in A. chevrieri, with a detection rate of 12.44 per cent (24/193). Genetic and phylogenetic analysis revealed the presence of three groups of CoVs carried by a range of rodents that were closely related to the Lucheng Rn rat CoV (LRNV), China Rattus CoV HKU24 (ChRCoV_HKU24), and Longquan Rl rat CoV (LRLV) identified previously. One newly identified A. chevrieri-associated virus closely related to LRNV lacked an NS2 gene. This virus had a similar genetic organization to AcCoV-JC34, recently discovered in the same rodent species in Yunnan, suggesting that it represents a new viral subtype. Notably, additional variants of LRNV were identified that contained putative non-structural (NS)2b genes located downstream of the NS2 gene that were likely derived from the host genome. Recombination events were also identified in the open reading frame (ORF) 1a gene of Lijiang-71. In sum, these data reveal the substantial genetic diversity and genomic complexity of rodent-borne CoVs, and extend our knowledge of these major wildlife virus reservoirs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhijuan Chen ◽  
Vanessa Lancon-Verdier ◽  
Christine Le Signor ◽  
Yi-Min She ◽  
Yun Kang ◽  
...  

AbstractGrain legumes are highly valuable plant species, as they produce seeds with high protein content. Increasing seed protein production and improving seed nutritional quality represent an agronomical challenge in order to promote plant protein consumption of a growing population. In this study, we used the genetic diversity, naturally present in Medicago truncatula, a model plant for legumes, to identify genes/loci regulating seed traits. Indeed, using sequencing data of 162 accessions from the Medicago HAPMAP collection, we performed genome-wide association study for 32 seed traits related to seed size and seed composition such as seed protein content/concentration, sulfur content/concentration. Using different GWAS and postGWAS methods, we identified 79 quantitative trait nucleotides (QTNs) as regulating seed size, 41 QTNs for seed composition related to nitrogen (i.e. storage protein) and sulfur (i.e. sulfur-containing amino acid) concentrations/contents. Furthermore, a strong positive correlation between seed size and protein content was revealed within the selected Medicago HAPMAP collection. In addition, several QTNs showed highly significant associations in different seed phenotypes for further functional validation studies, including one near an RNA-Binding Domain protein, which represents a valuable candidate as central regulator determining both seed size and composition. Finally, our findings in M. truncatula represent valuable resources to be exploitable in many legume crop species such as pea, common bean, and soybean due to its high synteny, which enable rapid transfer of these results into breeding programs and eventually help the improvement of legume grain production.


Sign in / Sign up

Export Citation Format

Share Document