scholarly journals Bacterial Communities in Serpa Cheese by Culture Dependent Techniques, 16S rRNA Gene Sequencing and High-throughput Sequencing Analysis

2018 ◽  
Vol 83 (5) ◽  
pp. 1333-1341 ◽  
Author(s):  
Maria Teresa P. Gonçalves ◽  
María José Benito ◽  
María de Guía Córdoba ◽  
Conceição Egas ◽  
Almudena V. Merchán ◽  
...  
Polar Science ◽  
2010 ◽  
Vol 4 (2) ◽  
pp. 215-227 ◽  
Author(s):  
Takahiro Segawa ◽  
Kazunari Ushida ◽  
Hideki Narita ◽  
Hiroshi Kanda ◽  
Shiro Kohshima

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Takayuki Matsuoka ◽  
Takuya Shimizu ◽  
Tadanori Minagawa ◽  
Wakiko Hiranuma ◽  
Miki Takeda ◽  
...  

Abstract Background Bacteroides dorei is an anaerobic gram-negative bacterium first described in 2006. Because of the high similarity in mass spectra between B. dorei and Bacteroides vulgatus, discriminating between these species is arduous in clinical practice. In recent decades, 16S rRNA gene sequencing has been a complementary method for distinguishing taxonomically close bacteria, including B. dorei and B. vulgatus, at the genus and species levels. Consequently, B. dorei has been shown to contribute to some diseases, including type 1 autoimmune diabetes mellitus and atherosclerotic diseases. However, there are no reports on invasive infectious diseases caused by B. dorei. This report describes the first case of direct invasion and colonisation of human tissue by B. dorei, thus providing a warning regarding the previously proposed application of B. dorei as a live biotherapeutic for atherosclerotic diseases. Case presentation A 78-year-old Japanese man complained of intermittent chest/back pain and was diagnosed with a mycotic thoracic aortic aneurysm by enhanced computed tomography on admission. Despite strict blood pressure control and empirical antibiotic therapy, the patient’s condition worsened. To prevent aneurysmal rupture and eliminate infectious foci, the patient underwent surgical treatment. The resected specimen was subjected to tissue culture and 16S rRNA gene sequencing analysis to identify pathogenic bacteria. A few days after the surgery, culture and sequencing results revealed that the pathogen was B. dorei/B. vulgatus and B. dorei, respectively. The patient was successfully treated with appropriate antibacterial therapy and after improvement, was transferred to another hospital for rehabilitation on postoperative day 34. There was no recurrence of infection or aneurysm after the patient transfer. Conclusions This report describes the first case of invasive infectious disease caused by B. dorei, casting a shadow over its utilisation as a probiotic for atherosclerotic diseases.


2010 ◽  
Vol 4 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Jens JØrgen Christensen ◽  
Brita Bruun ◽  
Ute Wolff Sönksen ◽  
Lisbeth Nielsen ◽  
Annemarie Hesselbjerg ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kaoru Haro ◽  
Midori Ogawa ◽  
Mitsumasa Saito ◽  
Koichi Kusuhara ◽  
Kazumasa Fukuda

AbstractNasopharyngeal colonization by bacteria is a prerequisite for progression to respiratory disease and an important source of horizontal spread within communities. We aimed to perform quantitative analysis of the bacterial cells and reveal the microbiota of the nasal discharge in children at the species level based on highly accurate 16S rRNA gene sequencing. This study enrolled 40 pediatric patients with rhinorrhea. The bacterial cells in the nasal discharge were counted by epifluorescence microscopic analysis. The microbiota was analyzed by using the 16S rRNA gene clone library sequencing method. We demonstrated that a high abundance (median 2.2 × 107 cells/mL) of bacteria was contained in the nasal discharge of children. Of the 40 samples, 37 (92.5%) were dominated by OTUs corresponding to Haemophilus aegyptius/influenzae, Moraxella catarrhalis/nonliquefaciens, or Streptococcus pneumoniae. These samples showed higher cell abundance and lower alpha diversity than the remaining three samples in which the other bacteria coexisted. In addition, 12 sequences with low homology to type strains were considered as previously unknown bacterial lineages. In conclusion, the nasal discharge of most young children contains a large amount of respiratory pathogens and several unknown bacteria, which could not only cause endogenous infection but also be a source of transmission to others.


2021 ◽  
Author(s):  
Eduardo Franco-Frías ◽  
Victor Mercado-Guajardo ◽  
Angel Merino-Mascorro ◽  
Janeth Pérez-Garza ◽  
Norma Heredia ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S625-S626
Author(s):  
Seth M Bloom ◽  
Nomfuneko A Mafunda ◽  
Benjamin M Woolston ◽  
Matthew R Hayward ◽  
Josephine F Frempong ◽  
...  

Abstract Background Cervicovaginal microbiota domination by Lactobacillus crispatus is associated with beneficial health outcomes, whereas L. iners dominance has more adverse associations. However bacterial vaginosis (BV) treatment with metronidazole (MTZ) typically leads to domination by L. iners rather than L. crispatus. L. iners differs from other lactobacilli by its inability to grow in MRS media. We hypothesized that exploring this growth difference would identify targets for selective L. iners inhibition. Methods Bacteria were grown anaerobically. Nutrient uptake and metabolism were assessed using UPLC-MS/MS and isotopically labeled substrates. Bacterial genome annotation employed Prodigal, Roary, and EggNOG. Competition experiments with mock mixed communities were analyzed by 16S rRNA gene sequencing. We confirmed result generalizability using a diverse collection of South African and North American strains and genomes. Results Supplementing MRS broth with L-cysteine (Cys) or L-cystine permitted robust L. iners growth, while L. crispatus grew without Cys supplementation. Despite their different growth requirements, neither species could synthesize Cys via canonical pathways. Adding the cystine uptake inhibitors S-methyl-L-cysteine (SMC, Fig 1) or seleno-DL-cystine (SDLC) blocked growth of L. iners but not other lactobacilli, suggesting L. iners lacks mechanisms other lactobacilli use to exploit complex exogenous Cys sources. Notably, cydABCD, an operon with Cys/glutathione transport and redox homeostasis activities, is absent from L. iners but present in non-iners Lactobacillus species. Consistent with possible roles for cydABCD in explaining the observed phenotypes, (1) L. iners failed to take up exogenous glutathione and (2) supplementing MRS with reducing agents permitted L. iners growth, which could be blocked by SMC or SDLC. In growth competitions testing L. iners and L. crispatus within mock BV-like communities, SMC plus MTZ outperformed MTZ alone in promoting L. crispatus dominance (Figs 2&3). Figure 1: S-methyl-L-cysteine (SMC) selectively blocks growth of L. iners but not other cervicovaginal Lactobacillus species in cysteine-supplemented MRS broth. Growth was measured by optical density and inhibition calculated relative to Cys-supplemented no-inhibitor control during exponential growth. Values displayed are median (+/- maximum/minimum) for 3 replicates from a single experiment. In all panels, representative data are shown from 1 of >=2 independent experiments for each bacterial strain and media condition. Results are representative of multiple strains for L. iners (n = 16), L. crispatus (n = 7), and L. jensenii (n = 2). Figure 2: Relative abundance of L. crispatus, L. iners, or various BV-associated bacteria in mock bacterial communities grown in rich, non-selective media with or without metronidazole (MTZ) and/or SMC. Relative abundance was determined by bacterial 16S rRNA gene sequencing. Data are shown for three representative mock communities with 5 replicates per media condition. Figure 3: Ratio of L. crispatus to other species in the mock bacterial communities depicted in Figure 2. Statistical significance determined via 1-way ANOVA of log10-transformed ratios with post-hoc Tukey test; selected pairwise comparisons are shown (***, p < 0.001). Conclusion L. iners has unique requirements for exogenous cysteine/cystine or a reduced environment for growth. Targeting cystine uptake to inhibit L. iners is a potential strategy for shifting cervicovaginal microbiota towards L. crispatus-dominant communities. Disclosures Douglas S. Kwon, MD, PhD, Day Zero Diagnostics (Consultant, Shareholder, Other Financial or Material Support, co-founder)


2021 ◽  
Author(s):  
Mudgil Devender ◽  
Dhiraj Paul ◽  
Sushmitha Baskar ◽  
Ramanathan Baskar ◽  
Yogesh S Shouche

Abstract This study reports on the culturable microbial communities in caves from the Indian sub-continent. A high bacterial diversity and a greater bacterial taxonomic diversity is reported using MALDI-TOF spectrometry and 16S rRNA gene sequencing. This approach helped to detect a number bacterial strains from the Indian caves. The microbial diversity in the Indian caves is inadequately characterized. The study aims to expand the current understanding of bacterial diversity in the speleothems from Krem Soitan, Krem Lawbah, Krem Mawpun in Khasi Hills, Meghalaya, India. High microbial enumerations were observed on dilute nutrient agar (5.3 × 103 to 8.8 × 105) followed by M9 minimal medium (4 × 104 to 1.7 × 105) and R2A medium (1.0 × 104 to 5.7 × 105). A total of 826 bacterial isolates were selected and preserved for the study. 295 bacterial isolates were identified using MALDI-TOF spectrometry and the isolates which showed no reliable peaks were further identified by 16S rRNA gene sequencing. 91% of the total bacterial diversity was dominated by Proteobacteria and Actinobacteria. The other important phyla detected include the Firmicutes (7.45%), Deinococcus-Thermus (0.33%) and Bacteroidetes (0.67%). At the genus level, Pseudomonas (55%) and Arthrobacter (23%) were ubiquitous followed by Acinetobacter, Bacillus, Brevundimonas, Deinococcus, Flavobacterium, Paenibacillus, Pseudarthrobacter. Multivariate statistical analysis indicated that the bacterial genera formed separate clusters depending on the geochemical constituents in the spring waters suitable for their growth and metabolism. A culture-dependent approach was employed for elucidating the community structure colonizing the speleothems and wall deposits in the caves using MALDI-TOF and 16S rRNA gene sequencing. To the best of our knowledge, there are no previous geomicrobiological investigations in these caves and this study is a pioneering culture dependent study of the microbial community with many cultured isolates.


2017 ◽  
Vol 2 (1) ◽  
Author(s):  
John Dotis ◽  
Nikoleta Printza ◽  
Stella Stabouli ◽  
Efthymia Petinaki ◽  
Fotios Papachristou

Sign in / Sign up

Export Citation Format

Share Document