Activity patterns and temporal niche partitioning in sympatric red‐legged and red‐necked pademelons

2021 ◽  
Author(s):  
Lucy E. V. Smith ◽  
Nigel R. Andrew ◽  
Karl Vernes
2019 ◽  
Vol 22 (6) ◽  
pp. 1061-1070 ◽  
Author(s):  
Isac Mella-Méndez ◽  
Rafael Flores-Peredo ◽  
Jairo Pérez-Torres ◽  
Sergio Hernández-González ◽  
Dino Ulises González-Uribe ◽  
...  

2021 ◽  
Vol 288 (1954) ◽  
pp. 20210816
Author(s):  
Karissa O. Lear ◽  
Nicholas M. Whitney ◽  
John J. Morris ◽  
Adrian C. Gleiss

Niche partitioning of time, space or resources is considered the key to allowing the coexistence of competitor species, and particularly guilds of predators. However, the extent to which these processes occur in marine systems is poorly understood due to the difficulty in studying fine-scale movements and activity patterns in mobile underwater species. Here, we used acceleration data-loggers to investigate temporal partitioning in a guild of marine predators. Six species of co-occurring large coastal sharks demonstrated distinct diel patterns of activity, providing evidence of strong temporal partitioning of foraging times. This is the first instance of diel temporal niche partitioning described in a marine predator guild, and is probably driven by a combination of physiological constraints in diel timing of activity (e.g. sensory adaptations) and interference competition (hierarchical predation within the guild), which may force less dominant predators to suboptimal foraging times to avoid agonistic interactions. Temporal partitioning is often thought to be rare compared to other partitioning mechanisms, but the occurrence of temporal partitioning here and similar characteristics in many other marine ecosystems (multiple predators simultaneously present in the same space with dietary overlap) introduces the question of whether this is a common mechanism of resource division in marine systems.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-10
Author(s):  
Gabriela Pérez-Irineo ◽  
Antonio Santos-Moreno

Activity patterns of species are related to their physiology, their behaviour and the environment and can change in response to different factors, such as interactions between species. Bird species, typical of the understorey, show morphological and ecological similarities and must thus have some mechanism of ecological separation, such as temporal niche partitioning. The objective of this study was to provide information about activity patterns and activity overlap of bird species typical of the understorey. We expected temporal niche partitioning between ecologically-similar species. We placed camera traps in 29 sampling points in a high evergreen forest in the southeast of Mexico between 2011 and 2013. All species were mainly diurnal and, contrary to what we expected, there was temporal partitioning between tinamids, but not in galliforms and columbiforms. The degree of activity overlap might reflect a solitary or group lifestyle of the three sets of species, as well as shared behavioural preferences and similar adaptations. These results contribute to our knowledge of the basic biology and behavioural ecology of birds of the understorey.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Miyabi Nakabayashi ◽  
Tomoko Kanamori ◽  
Aoi Matsukawa ◽  
Joseph Tangah ◽  
Augustine Tuuga ◽  
...  

AbstractTo propose proper conservation measures and to elucidate coexistence mechanisms of sympatric carnivore species, we assessed temporal activity patterns of the sympatric carnivore species using 37,379 photos collected for more than 3 years at three study sites in Borneo. We categorized activity patterns of nine carnivore species (one bear, three civets, two felids, one skunk, one mustelid, one linsang) by calculating the photo-capturing proportions at each time period (day, night, twilight). We then evaluated temporal activity overlaps by calculating the overlap coefficients. We identified six nocturnal (three civets, one felid, one skunk, one linsang), two diurnal (one felid, one mustelid), and one cathemeral (bear) species. Temporal activity overlaps were high among the nocturnal species. The two felid species possessing morphological and ecological similarities exhibited clear temporal niche segregation, but the three civet species with similar morphology and ecology did not. Broad dietary breadth may compensate for the high temporal niche overlaps among the nocturnal species. Despite the high species richness of Bornean carnivores, almost half are threatened with extinction. By comparing individual radio-tracking and our data, we propose that a long-term study of at least 2 or 3 years is necessary to understand animals’ temporal activity patterns, especially for sun bears and civets, by camera-trapping and to establish effective protection measures.


2021 ◽  
Author(s):  
Miyabi Nakabayashi ◽  
Tomoko Kanamori ◽  
Aoi Matsukawa ◽  
Joseph Tangah ◽  
Augustine Tuuga ◽  
...  

Abstract To propose proper conservation measures and to elucidate coexistence mechanisms of sympatric carnivore species, we assessed their temporal activity patterns using 37,379 photos collected for more than three years at three study sites in Borneo. We categorized activity patterns of nine carnivore species (one bear, three civets, two felids, one skunk, one mustelid, one linsang) by calculating the photo-capturing proportions at each period (day, night, twilight). We then evaluated temporal activity overlaps by calculating the overlap coefficients. We identified six nocturnal (three civets, one felid, one skunk, one linsang), two diurnal (one felids, one mustelid), and one cathemeral (bear) species. Temporal activity overlaps were high among the nocturnal species. The two felid species possessing morphological and ecological similarities exhibited clear temporal niche segregation, but the three civet species did not. Broad dietary breadth may compensate for the high temporal niche overlaps among the nocturnal species. Despite the high species richness of Bornean carnivores, almost half are threatened with extinction. By comparing individual radio-tracking and our data, we propose that a long-term study of at least three years is necessary to understand animals’ temporal activity patterns by camera-trapping and to avoid diverting conservationists away from effective protection measures.


2014 ◽  
Vol 20 (9) ◽  
pp. 1002-1015 ◽  
Author(s):  
David S. Jachowski ◽  
Chris A. Dobony ◽  
Laci S. Coleman ◽  
William M. Ford ◽  
Eric R. Britzke ◽  
...  

2019 ◽  
Author(s):  
Sadoune Ait Kaci Azzou ◽  
Liam Singer ◽  
Thierry Aebischer ◽  
Madleina Caduff ◽  
Beat Wolf ◽  
...  

SummaryCamera traps and acoustic recording devices are essential tools to quantify the distribution, abundance and behavior of mobile species. Varying detection probabilities among device locations must be accounted for when analyzing such data, which is generally done using occupancy models. We introduce a Bayesian Time-dependent Observation Model for Camera Trap data (Tomcat), suited to estimate relative event densities in space and time. Tomcat allows to learn about the environmental requirements and daily activity patterns of species while accounting for imperfect detection. It further implements a sparse model that deals well will a large number of potentially highly correlated environmental variables. By integrating both spatial and temporal information, we extend the notation of overlap coefficient between species to time and space to study niche partitioning. We illustrate the power of Tomcat through an application to camera trap data of eight sympatrically occurring duiker Cephalophinae species in the savanna - rainforest ecotone in the Central African Republic and show that most species pairs show little overlap. Exceptions are those for which one species is very rare, likely as a result of direct competition.


Sign in / Sign up

Export Citation Format

Share Document