scholarly journals Changes in plasma membrane damage inducing cell death after treatment with near‐infrared photoimmunotherapy

2018 ◽  
Vol 109 (9) ◽  
pp. 2889-2896 ◽  
Author(s):  
Kohei Nakajima ◽  
Hideo Takakura ◽  
Yoichi Shimizu ◽  
Mikako Ogawa
2020 ◽  
Vol 21 (7) ◽  
pp. 2412 ◽  
Author(s):  
Uris Ros ◽  
Lohans Pedrera ◽  
Ana J. Garcia-Saez

Pyroptosis, necroptosis, and ferroptosis are well-characterized forms of regulated necrosis that have been associated with human diseases. During regulated necrosis, plasma membrane damage facilitates the movement of ions and molecules across the bilayer, which finally leads to cell lysis and release of intracellular content. Therefore, these types of cell death have an inflammatory phenotype. Each type of regulated necrosis is mediated by a defined machinery comprising protein and lipid molecules. Here, we discuss how the interaction and reshaping of these cellular components are essential and distinctive processes during pyroptosis, necroptosis, and ferroptosis. We point out that although the plasma membrane is the common target in regulated necrosis, different mechanisms of permeabilization have emerged depending on the cell death form. Pore formation by gasdermins (GSDMs) is a hallmark of pyroptosis, while mixed lineage kinase domain-like (MLKL) protein facilitates membrane permeabilization in necroptosis, and phospholipid peroxidation leads to membrane damage in ferroptosis. This diverse repertoire of mechanisms leading to membrane permeabilization contributes to define the specific inflammatory and immunological outcome of each type of regulated necrosis. Current efforts are focused on new therapies that target critical protein and lipid molecules on these pathways to fight human pathologies associated with inflammation.


Author(s):  
Lohans Pedrera ◽  
Rafael A. Espiritu ◽  
Uris Ros ◽  
Josephine Weber ◽  
Anja Schmitt ◽  
...  

AbstractFerroptosis is an iron-dependent form of regulated necrosis associated with lipid peroxidation. Despite its key role in the inflammatory outcome of ferroptosis, little is known about the molecular events leading to the disruption of the plasma membrane during this type of cell death. Here we show that a sustained increase in cytosolic Ca2+ is a hallmark of ferroptosis that precedes complete bursting of the cell. We report that plasma membrane damage leading to ferroptosis is associated with membrane nanopores of a few nanometers in radius and that ferroptosis, but not lipid peroxidation, can be delayed by osmoprotectants. Importantly, Ca2+ fluxes during ferroptosis induce the activation of the ESCRT-III-dependent membrane repair machinery, which counterbalances the kinetics of cell death and modulates the immunological signature of ferroptosis. Our findings with ferroptosis provide a unifying concept that sustained increase of cytosolic Ca2+ prior to plasma membrane rupture is a common feature of regulated types of necrosis and position ESCRT-III activation as a general protective mechanism in these lytic cell death pathways.


2005 ◽  
Vol 33 (3) ◽  
pp. 249-259 ◽  
Author(s):  
Emil Rudolf ◽  
Miroslav Červinka

The role of biomembranes in the chronic toxicity of environmentally occurring chromium acetate hydroxide was investigated by using primary human fibroblasts. Transport of chromium acetate hydroxide across the plasma membrane of the cell, and the effects of chromium (III) ions on the plasma membrane as well as other intracellular membranes, were determined during six weeks of continuous exposure by using atomic absorption spectrometry, observation of cell morphology, membrane integrity assays (for lactate dehydrogenase leakage and lysosomal membrane disruption), and mitochondrial assays (for mitochondrial dehydrogenase activity and mitochondrial transmembrane potential analysis). The type of cell death induced by long-term exposure was determined in terms of phosphatidylserine externalisation, caspase-3 activation, and chromatin fragmentation. Chromium acetate hydroxide, at a concentration of 100μmol/l, accumulated in exposed cells, inflicting plasma membrane damage and suppressing mitochondrial function. Antioxidant co-enzyme Q, at a concentration of 10μmol/l, partially prevented plasma membrane damage and mitochondrial dysfunction. Exposure to chromium acetate hydroxide produced apoptosis, necrosis and an intermediate type of cell death in primary human fibroblasts. These results show that the plasma membrane and mitochondrial membrane are important targets for chronic chromium acetate hydroxide toxicity, and that this in vitro system holds promise for studying the toxicity resulting from long-term exposure to metal ions.


2019 ◽  
Author(s):  
Lohans Pedrera ◽  
Rafael A. Espiritu ◽  
Uris Ros ◽  
Anja Schmitt ◽  
Stephan Hailfinger ◽  
...  

SummaryFerroptosis is an iron-dependent form of regulated necrosis associated with lipid peroxidation. Despite its key role in the inflammatory outcome of ferroptosis, little is known about the molecular events leading to the disruption of the plasma membrane during this type of cell death. Here we show that a sustained increase in cytosolic Ca2+ is a hallmark of ferroptosis that precedes complete bursting of the cell. We report that plasma membrane damage leading to ferroptosis is associated with membrane nanopores of few nanometers in radius and that ferroptosis, but not lipid peroxidation, can be delayed by osmoprotectants. Importantly, Ca2+ fluxes during ferroptosis correlate with the activation of ESCRT-III-mediated membrane repair, which counterbalances the kinetics of cell death and modulates the inflammatory signature of ferroptosis. Our findings with ferroptosis provide a unifying concept that sustained high levels of cytosolic Ca2+ prior to plasma membrane disruption are a common feature of regulated necrosis and position ESCRT-III as a general protective mechanism in these inflammatory cell death pathways.


2021 ◽  
Vol 7 (13) ◽  
pp. eabc6345
Author(s):  
Shrawan Kumar Mageswaran ◽  
Wei Yuan Yang ◽  
Yogaditya Chakrabarty ◽  
Catherine M. Oikonomou ◽  
Grant J. Jensen

Cryo–electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the ‘endosomal sorting complex required for transport’ machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dustin A. Ammendolia ◽  
William M. Bement ◽  
John H. Brumell

AbstractPlasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


Biology Open ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. bio035287 ◽  
Author(s):  
Lars Nygård Skalman ◽  
Mikkel R. Holst ◽  
Elin Larsson ◽  
Richard Lundmark

1998 ◽  
Vol 110 (1) ◽  
pp. 79-83 ◽  
Author(s):  
Sally H. Ibbotson ◽  
Christopher R. Lambert ◽  
Michael N. Moran ◽  
Mary C. Lynch ◽  
Irene E. Kochevar

Sign in / Sign up

Export Citation Format

Share Document