Di‐genic inheritance of germline POLE and PMS2 pathogenic variants causes a unique condition associated with pediatric cancer predisposition

2021 ◽  
Author(s):  
Orli Michaeli ◽  
Hagay Ladany ◽  
Ayelet Erez ◽  
Shay Ben Shachar ◽  
Shai Izraeli ◽  
...  
2019 ◽  
Vol 20 (1) ◽  
pp. 241-263 ◽  
Author(s):  
Sharon E. Plon ◽  
Philip J. Lupo

Developments over the past five years have significantly advanced our ability to use genome-scale analyses—including high-density genotyping, transcriptome sequencing, exome sequencing, and genome sequencing—to identify the genetic basis of childhood cancer. This article reviews several key results from an expanding number of genomic studies of pediatric cancer: ( a) Histopathologic subtypes of cancers can be associated with a high incidence of germline predisposition, ( b) neurodevelopmental disorders or highly penetrant cancer predisposition syndromes can result from specific patterns of variation in genes encoding the SMARC family of chromatin remodelers, ( c) genome-wide association studies with relatively small pediatric cancer cohorts have successfully identified single-nucleotide polymorphisms with large effect sizes and provided insight into population differences in cancer risk, and ( d) multiple exome or genome analyses of unselected childhood cancer cohorts have yielded a 7–10% incidence of pathogenic variants in cancer predisposition genes. This work supports the increasing use of genomic sequencing in the care of pediatric cancer patients and at-risk family members.


2021 ◽  
Author(s):  
Anna Byrjalsen ◽  
Illja J. Diets ◽  
Jette Bakhuizen ◽  
Thomas van Overeem Hansen ◽  
Kjeld Schmiegelow ◽  
...  

AbstractIncreasing use of genomic sequencing enables standardized screening of all childhood cancer predisposition syndromes (CPS) in children with cancer. Gene panels currently used often include adult-onset CPS genes and genes without substantial evidence linking them to cancer predisposition. We have developed criteria to select genes relevant for childhood-onset CPS and assembled a gene panel for use in children with cancer. We applied our criteria to 381 candidate genes, which were selected through two in-house panels (n = 338), a literature search (n = 39), and by assessing two Genomics England’s PanelApp panels (n = 4). We developed evaluation criteria that determined a gene’s eligibility for inclusion on a childhood-onset CPS gene panel. These criteria assessed (1) relevance in childhood cancer by a minimum of five childhood cancer patients reported carrying a pathogenic variant in the gene and (2) evidence supporting a causal relation between variants in this gene and cancer development. 138 genes fulfilled the criteria. In this study we have developed criteria to compile a childhood cancer predisposition gene panel which might ultimately be used in a clinical setting, regardless of the specific type of childhood cancer. This panel will be evaluated in a prospective study. The panel is available on (pediatric-cancer-predisposition-genepanel.nl) and will be regularly updated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Angela Mastronuzzi ◽  
Luigi Boccuto ◽  
Riccardo Masetti

Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1340 ◽  
Author(s):  
Gianluca Tedaldi ◽  
Francesca Pirini ◽  
Michela Tebaldi ◽  
Valentina Zampiga ◽  
Ilaria Cangini ◽  
...  

The main gene involved in gastric cancer (GC) predisposition is CDH1, the pathogenic variants of which are associated with diffuse-type gastric cancer (DGC) and lobular breast cancer (LBC). CDH1 only explains a fraction (10–50%) of patients suspected of DGC/LBC genetic predisposition. To identify novel susceptibility genes, thus improving the management of families at risk, we performed a multigene panel testing on selected patients. We searched for germline pathogenic variants in 94 cancer-related genes in 96 GC or LBC Italian patients with early-onset and/or family history of GC. We found CDH1 pathogenic variants in 10.4% of patients. In 11.5% of cases, we identified loss-of-function variants in BRCA1, BRCA2, PALB2, and ATM breast/ovarian cancer susceptibility genes, as well as in MSH2, PMS2, BMPR1A, PRF1, and BLM genes. In 78.1% of patients, we did not find any variants with clear-cut clinical significance; however, 37.3% of these cases harbored rare missense variants predicted to be damaging by bioinformatics tools. Multigene panel testing decreased the number of patients that would have otherwise remained genetically unexplained. Besides CDH1, our results demonstrated that GC pathogenic variants are distributed across a number of susceptibility genes and reinforced the emerging link between gastric and breast cancer predisposition.


2018 ◽  
Vol 47 (5) ◽  
pp. e204-e216 ◽  
Author(s):  
Stephanie A. Coury ◽  
Katherine A. Schneider ◽  
Jaclyn Schienda ◽  
Wen-Hann Tan

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 127-127 ◽  
Author(s):  
Michael Walsh ◽  
Gang Wu ◽  
Michael Edmonson ◽  
Tanja A Gruber ◽  
John Easton ◽  
...  

Abstract Pathologic germ line mutations that predispose patients to cancer are estimated to occur in 4-30% of all pediatric oncology cases. In addition to leukemia specific familial predisposition syndromes, children with rare constitutional syndromes, heterogeneous dysmorphic syndromes, and multiple-cancer hereditary predisposition syndromes are all at an increased risk for hematologic malignancies. However, to date no genome-wide analysis has been done to define the range of germ line mutations that occur in pediatric patients with hematological malignancies. To determine the frequency of pediatric cancer patients that have germ line variants of pathological significance in genes that predisposed to cancer, we analyzed the germ line and tumor DNA from 1120 pediatric cancer patients that were enrolled in the St. Jude – Washington University Pediatric Cancer Genome Project (PCGP). Samples were analyzed by whole-genome sequencing (n = 595), whole-exome sequencing (n = 456), or both (n = 69). Single nucleotide variants (SNVs), insertions/deletions (indels), structural variations (SV) and copy number alterations (CNAs) were detected using our analytical pipeline and all single nucleotide polymorphisms (SNPs) previously identified in non-cancer populations were filtered out. Our analysis then focused on the 23 cancer predisposition genes recently recommended for germ line analysis by the American College of Genetics and Genomics, along with an additional 8 genes that have been previously shown to predispose to pediatric cancer at a high penetrance. All variants in these 31 genes were classified as pathologic, likely pathologic, uncertain significance, likely benign, and benign based on literature review and in-silico predictions on the effect of novel mutations. An expanded analysis including a total of 565 genes known to play a role in oncogenesis was also evaluated. Pathologic or likely pathologic germ line variants in one of the 31 genes were detected in 8% (90/1120) of patients, including: 16% (46/287) of patients with solid tumors, 8.6% (21/245) with brain tumors, and 3.9% (23/588) with leukemia. Expanding this analysis to 565 cancer gene resulted in only a slight increase, with a pathologic or likely pathologic variant being detected in 8.6% (97/1120) of patients. The most frequently effected genes included TP53 (n=48), APC (n=7) and BRCA2(n=6). Importantly, in >50% of these patients, analysis of their tumor DNA revealed the absence of a wild type allele for the cancer predisposition gene that was altered in the germ line. The 588 pediatric patients with leukemia included 116 acute myeloid leukemias (AMLs: FAB M7 n=20; Core Binding Factor leukemias n=86; MLL-R n=10) and 472 acute lymphoblastic leukemias (ALLs: E2A-PBX1 n=53; ERG-R n=39; TEL-AML1 n=53; Hyperdiploid n=69; Hypodiploid n=47; BCR-ABL1 n=40; T-ALL n=32; MLL-R n=40; BCR-ABL-like n=31; and Other n=68). Across this cohort, 3.9% (23/588) of leukemia patients harbored a pathologic germ line mutations in one of the 31 cancer pre-disposing genes. This number increased to 4.6% (27/588; 28 mutations) when the expanded gene list was evaluated. TP53 (n=10) was the most frequently altered germ line gene in pediatric leukemia patients and was found predominantly in low-hypodiploid ALL, as previously reported. Germ line pathologic variants were also identified in KRAS, RUNX1, APC, BRCA2, and RET (2 cases each), and NRAS, SH2B3, BRCA1, MUTYH, PTCH1, SDHA,VHL, and NF2 (1 case each). Although germ line mutations in RUNX1 and SH2B3are typically associated with myeloid neoplasms, we identified these lesions in 3 cases of B lineage ALL suggesting an association with a wider spectrum of leukemia. In conclusion, a small but significant proportion of pediatric patients with leukemia carry a germ line variant of pathologic significance in a cancer predisposition gene. These results suggest that these germ line lesions likely play a direct role in the pathogenesis of the patient’s presenting leukemia. Moreover, our results suggest that these patients would benefit from future clinical surveillance for the development of a second cancer. Lastly, these data demonstrate the power of comprehensive next generation DNA/RNA sequencing for the identification of pediatric patients who carry a germ line pathologic variant in a cancer predisposition gene. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Siddhartha Yadav ◽  
Chunling Hu ◽  
Katherine L. Nathanson ◽  
Jeffrey N. Weitzel ◽  
David E. Goldgar ◽  
...  

PURPOSE To determine the contribution of germline pathogenic variants (PVs) in hereditary cancer testing panel genes to invasive lobular carcinoma (ILC) of the breast. MATERIALS AND METHODS The study included 2,999 women with ILC from a population-based cohort and 3,796 women with ILC undergoing clinical multigene panel testing (clinical cohort). Frequencies of germline PVs in breast cancer predisposition genes ( ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, PALB2, PTEN, RAD51C, RAD51D, and TP53) were compared between women with ILC and unaffected female controls and between women with ILC and infiltrating ductal carcinoma (IDC). RESULTS The frequency of PVs in breast cancer predisposition genes among women with ILC was 6.5% in the clinical cohort and 5.2% in the population-based cohort. In case-control analysis, CDH1 and BRCA2 PVs were associated with high risks of ILC (odds ratio [OR] > 4) and CHEK2, ATM, and PALB2 PVs were associated with moderate (OR = 2-4) risks. BRCA1 PVs and CHEK2 p.Ile157Thr were not associated with clinically relevant risks (OR < 2) of ILC. Compared with IDC, CDH1 PVs were > 10-fold enriched, whereas PVs in BRCA1 were substantially reduced in ILC. CONCLUSION The study establishes that PVs in ATM, BRCA2, CDH1, CHEK2, and PALB2 are associated with an increased risk of ILC, whereas BRCA1 PVs are not. The similar overall PV frequencies for ILC and IDC suggest that cancer histology should not influence the decision to proceed with genetic testing. Similar to IDC, multigene panel testing may be appropriate for women with ILC, but CDH1 should be specifically discussed because of low prevalence and gastric cancer risk.


2018 ◽  
Vol 3 ◽  
pp. 68
Author(s):  
Shazia Mahamdallie ◽  
Elise Ruark ◽  
Esty Holt ◽  
Emma Poyastro-Pearson ◽  
Anthony Renwick ◽  
...  

The analytical sensitivity of a next generation sequencing (NGS) test reflects the ability of the test to detect real sequence variation. The evaluation of analytical sensitivity relies on the availability of gold-standard, validated, benchmarking datasets. For NGS analysis the availability of suitable datasets has been limited. Most laboratories undertake small scale evaluations using in-house data, and/or rely on in silico generated datasets to evaluate the performance of NGS variant detection pipelines. Cancer predisposition genes (CPGs), such as BRCA1 and BRCA2, are amongst the most widely tested genes in clinical practice today. Hundreds of providers across the world are now offering CPG testing using NGS methods. Validating and comparing the analytical sensitivity of CPG tests has proved difficult, due to the absence of comprehensive, orthogonally validated, benchmarking datasets of CPG pathogenic variants. To address this we present the ICR639 CPG NGS validation series. This dataset comprises data from 639 individuals. Each individual has sequencing data generated using the TruSight Cancer Panel (TSCP), a targeted NGS assay for the analysis of CPGs, together with orthogonally generated data showing the presence of at least one CPG pathogenic variant per individual. The set consists of 645 pathogenic variants in total. There is strong representation of the most challenging types of variants to detect, with 339 indels, including 16 complex indels and 24 with length greater than five base pairs and 74 exon copy number variations (CNVs) including 23 single exon CNVs. The series includes pathogenic variants in 31 CPGs, including 502 pathogenic variants in BRCA1 or BRCA2, making this an important comprehensive validation dataset for providers of BRCA1 and BRCA2 NGS testing. We have deposited the TSCP FASTQ files of the ICR639 series in the European Genome-phenome Archive (EGA) under accession number EGAD00001004134.


2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Ming Ren Toh ◽  
Jian Bang Chiang ◽  
Siao Ting Chong ◽  
Sock Hoai Chan ◽  
Nur Diana Binte Ishak ◽  
...  

Abstract Background Growing evidence suggests a role for cancer susceptibility genes such as BRCA2 and PALB2 in young-onset colorectal cancers. Using a cohort of young colorectal cancer patients, we sought to identify and provide functional evidence for germline pathogenic variants of DNA repair genes not typically associated with colorectal cancer. Methods We recruited 88 patients with young-onset colorectal cancers seen at a general oncology center. Whole-exome sequencing was performed to identify variants in DNA repair and colorectal cancer predisposition genes. Pathogenic BRCA2 and PALB2 variants were analyzed using immunoblot and immunofluorescence on patient-derived lymphoblastoid cells. Results In general, our cohort displayed characteristic features of young-onset colorectal cancers. Most patients had left-sided tumors and were diagnosed at late stages. Four patients had familial adenomatous polyposis, as well as pathogenic APC variants. We identified 12 pathogenic variants evenly distributed between DNA repair and colorectal cancer predisposition genes. Six patients had pathogenic variants in colorectal cancer genes: APC (n = 4) and MUTYH monoallelic (n = 2). Another six had pathogenic variants in DNA repair genes: ATM (n = 1), BRCA2 (n = 1), PALB2 (n = 1), NTHL1 (n = 1), and WRN (n = 2). Pathogenic variants BRCA2 c.9154C>T and PALB2 c.1059delA showed deficient homologous recombination repair, evident from the impaired RAD51 nuclear localization and foci formation. Conclusion A substantial portion of pathogenic variants in young-onset colorectal cancer was found in DNA repair genes not previously associated with colorectal cancer. This may have implications for the management of patients. Further studies are needed to ascertain the enrichment of pathogenic DNA repair gene variants in colorectal cancers.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 4102-4102 ◽  
Author(s):  
Emmet Jordan ◽  
Maeve Aine Lowery ◽  
Winston Wong ◽  
Yelena Kemel ◽  
Semanti Mukherjee ◽  
...  

4102 Background: Cancer predisposition syndromes are identified in a subset of PAC. Identifying PGA has implications for therapy as well as for cancer predisposition in blood relatives. Germline testing (GT) in the US is currently performed in a small subset of PAC patients according to NCCN/other guidelines. At MSKCC, we have implemented an ‘opt in’ strategy to perform germline testing in all patients evaluated in PAC clinics at MSKCC. Methods: PAC pts consented prospectively for GT had samples analyzed for pathogenic or likely pathogenic variants using the MSK-IMPACT germline platform (NCT01775072). All pts first had somatic profiling of tumor samples for > 340 genes by MSK-IMPACT. Clinicopathological features, time to progression on platinum (TTPP) and overall survival (OS) were collated. Results: N = 305 PAC pts consented for GT between 9/2015-11/2016.164/305 (54%) were male, 70/305 (23%) were Ashkenazi Jewish. 242 pts (79%) had a family hx of cancer. 67/305 (22%) had a GA identified, 45/67 (67%) were stage III/IV at dx. Median age at PAC dx for all GA carriers was 60 years (y) (range 29-81) compared to 66 y (18-69) without GA. Median age at dx was 54 y (32-68) for BRCA1 and 61 y (37-77) for BRCA2 GA. 3/9 and 3/20 pts with BRCA1/2 GA had a PAC dx < 50 y. 2/63 pts (3%) with no family hx had a GA (CDKN2A, PMS2). N = 5/22 pts (23%) with a 1st degree relative (DR) with PAC had a GA. N = 13/45 pts (29%) had a GA with either a 1st or 2nd DR with PAC. 19/84 pts (23%) with ≥2 1stDR with cancer had a GA detected. For median OS and TTP on platinum therapy, see Table. Pts with BRCA1/2, ATM and those with coexisting GA tended to have a better median OS as well as longer TTP on platinum therapy (Table). Conclusions: GA’s are significantly under identified in PAC using current practices with a high, frequency (22%) observed in this relatively unselected cohort. BRCA mutations are the most frequent GA noted. There are significant implications of these observations for therapy and for blood relatives. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document