Congenital nevi versus metastatic melanoma in a newborn to a mother with malignant melanoma - diagnosis supported by sex chromosome analysis and Imaging Mass Spectrometry

2015 ◽  
Vol 42 (10) ◽  
pp. 757-764 ◽  
Author(s):  
Ahmed K. Alomari ◽  
Earl J. Glusac ◽  
Jennifer Choi ◽  
Pei Hui ◽  
Erin H. Seeley ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3197
Author(s):  
Rita Casadonte ◽  
Mark Kriegsmann ◽  
Katharina Kriegsmann ◽  
Isabella Hauk ◽  
Rolf R. Meliß ◽  
...  

The discrimination of malignant melanoma from benign nevi may be difficult in some cases. For this reason, immunohistological and molecular techniques are included in the differential diagnostic toolbox for these lesions. These methods are time consuming when applied subsequently and, in some cases, no definitive diagnosis can be made. We studied both lesions by imaging mass spectrometry (IMS) in a large cohort (n = 203) to determine a different proteomic profile between cutaneous melanomas and melanocytic nevi. Sample preparation and instrument setting were tested to obtain optimal results in term of data quality and reproducibility. A proteomic signature was found by linear discriminant analysis to discern malignant melanoma from benign nevus (n = 113) with an overall accuracy of >98%. The prediction model was tested in an independent set (n = 90) reaching an overall accuracy of 93% in classifying melanoma from nevi. Statistical analysis of the IMS data revealed mass-to-charge ratio (m/z) peaks which varied significantly (Area under the receiver operating characteristic curve > 0.7) between the two tissue types. To our knowledge, this is the largest IMS study of cutaneous melanoma and nevi performed up to now. Our findings clearly show that discrimination of melanocytic nevi from melanoma is possible by IMS.


2020 ◽  
Author(s):  
Elizabeth Neumann ◽  
Lukasz Migas ◽  
Jamie L. Allen ◽  
Richard Caprioli ◽  
Raf Van de Plas ◽  
...  

<div> <div> <p>Small metabolites are essential for normal and diseased biological function but are difficult to study because of their inherent structural complexity. MALDI imaging mass spectrometry (IMS) of small metabolites is particularly challenging as MALDI matrix clusters are often isobaric with metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, enabling the visualization of metabolites without the interference of matrix ions. Here, we use MALDI timsTOF IMS to image small metabolites at high spatial resolution within the human kidney. Through this, we have found metabolites, such as arginic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. We have also demonstrated that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different localizations within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for molecular imaging experiments. Future work will involve further exploring the small metabolite profiles of human kidneys as a function of age, gender, and ethnicity.</p></div></div>


2021 ◽  
Vol 22 (3) ◽  
pp. 1085
Author(s):  
Aneeqa Noor ◽  
Saima Zafar ◽  
Inga Zerr

Proteinopathy refers to a group of disorders defined by depositions of amyloids within living tissue. Neurodegenerative proteinopathies, including Alzheimer’s disease, Parkinson’s disease, Creutzfeldt–Jakob disease, and others, constitute a large fraction of these disorders. Amyloids are highly insoluble, ordered, stable, beta-sheet rich proteins. The emerging theory about the pathophysiology of neurodegenerative proteinopathies suggests that the primary amyloid-forming proteins, also known as the prion-like proteins, may exist as multiple proteoforms that contribute differentially towards the disease prognosis. It is therefore necessary to resolve these disorders on the level of proteoforms rather than the proteome. The transient and hydrophobic nature of amyloid-forming proteins and the minor post-translational alterations that lead to the formation of proteoforms require the use of highly sensitive and specialized techniques. Several conventional techniques, like gel electrophoresis and conventional mass spectrometry, have been modified to accommodate the proteoform theory and prion-like proteins. Several new ones, like imaging mass spectrometry, have also emerged. This review aims to discuss the proteoform theory of neurodegenerative disorders along with the utility of these proteomic techniques for the study of highly insoluble proteins and their associated proteoforms.


Author(s):  
Laura K. Schnackenberg ◽  
David A. Thorn ◽  
Dustyn Barnette ◽  
E. Ellen Jones

2014 ◽  
Vol 14 (2) ◽  
pp. 986-996 ◽  
Author(s):  
Domenico Taverna ◽  
Alonda C. Pollins ◽  
Giovanni Sindona ◽  
Richard M. Caprioli ◽  
Lillian B. Nanney

2014 ◽  
Vol 55 (11) ◽  
pp. 2343-2353 ◽  
Author(s):  
Christian Marsching ◽  
Richard Jennemann ◽  
Raphael Heilig ◽  
Hermann-Josef Gröne ◽  
Carsten Hopf ◽  
...  

Reproduction ◽  
2003 ◽  
pp. 279-297 ◽  
Author(s):  
MA Hulten ◽  
S Dhanjal ◽  
B Pertl

Molecular techniques have been developed for prenatal diagnosis of the most common chromosome disorders (trisomies 21, 13, 18 and sex chromosome aneuploidies) where results are available within a day or two. This involves fluorescence in situ hybridization (FISH) and microscopy analysis of fetal cells or quantitative fluorescence polymerase chain reaction (QF-PCR) on fetal DNA. Guidance is provided on the technological pitfalls in setting up and running these methods. Both methods are reliable, and the risk for misdiagnosis is low, although slightly higher for FISH. FISH is also more labour intensive than QF-PCR, the latter lending itself more easily to automation. These tests have been used as a preamble to full chromosome analysis by microscopy. However, there is a trend to apply the tests as 'stand-alone' tests for women who are at relatively low risk of having a baby with a chromosome disorder, in particular that associated with advanced age or results of maternal serum screening programmes. These women comprise the majority of those currently offered prenatal diagnosis with respect to fetal chromosome disorders and if introduced on a larger scale, the use of FISH and QF-PCR would lead to substantial economical savings. The implication, on the other hand, is that around one in 500 to one in 1000 cases with a mentally and/or physically disabling chromosome disorder would remain undiagnosed.


Sign in / Sign up

Export Citation Format

Share Document