Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans

2012 ◽  
Vol 15 (5) ◽  
pp. 474-477 ◽  
Author(s):  
T. Wu ◽  
M. J. Bound ◽  
S. D. Standfield ◽  
B. Gedulin ◽  
K. L. Jones ◽  
...  
2019 ◽  
Vol 316 (5) ◽  
pp. G574-G584 ◽  
Author(s):  
Charlotte Bayer Christiansen ◽  
Samuel Addison Jack Trammell ◽  
Nicolai Jacob Wewer Albrechtsen ◽  
Kristina Schoonjans ◽  
Reidar Albrechtsen ◽  
...  

A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion.NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.


2000 ◽  
Vol 279 (5) ◽  
pp. G925-G930 ◽  
Author(s):  
G. Cuche ◽  
J. C. Cuber ◽  
C. H. Malbert

The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 ± 1.2 vs. 49 ± 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 ± 0.11 vs. 1.3 ± 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 ± 1.0 and 34 ± 0.8 vs. 47 ± 1.3 and 43 ± 1.2%; frequency, 1.4 ± 0.07 and 1.6 ± 0.06 vs. 1.1 ± 0.14 and 1.0 ± 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.


2018 ◽  
Vol 28 (6) ◽  
pp. 602-610
Author(s):  
Linn Bøhler ◽  
Sílvia Ribeiro Coutinho ◽  
Jens F. Rehfeld ◽  
Linda Morgan ◽  
Catia Martins

Active, as opposed to inactive, individuals are able to adjust their energy intake after preloads of different energy contents. The mechanisms responsible for this remain unknown. This study examined differences in plasma concentration of appetite-related hormones in response to breakfasts of different energy contents, between active and inactive men. Sixteen healthy nonobese (body mass index = 18.5–27 kg/m2) adult males (nine active and seven inactive) participated in this study. Participants were given a high-energy (570 kcal) or a low-energy (205 kcal) breakfast in a random order. Subjective feelings of appetite and plasma concentrations of active ghrelin, active glucagon-like peptide-1, total peptide YY (PYY), cholecystokinin, and insulin were measured in fasting and every 30 min up to 2.5 hr, in response to both breakfasts. Mixed analysis of variance (fat mass [in percentage] as a covariate) revealed a higher concentration of active ghrelin and lower concentration of glucagon-like peptide-1, and cholecystokinin after the low-energy breakfast (p < .001 for all). Postprandial concentration of PYY was greater after the high energy compared with the low energy, but for inactive participants only (p = .014). Active participants had lower postprandial concentrations of insulin than inactive participants (p < .001). Differences in postprandial insulin between breakfasts were significantly lower in active compared with inactive participants (p < .001). Physical activity seems to modulate the postprandial plasma concentration of insulin and PYY after the intake of breakfasts of different energy contents, and that may contribute, at least partially, to the differences in short-term appetite control between active and inactive individuals.


2007 ◽  
Vol 85 (4) ◽  
pp. 967-971 ◽  
Author(s):  
Natacha Germain ◽  
Bogdan Galusca ◽  
Carel W Le Roux ◽  
Cecile Bossu ◽  
Mohammad A Ghatei ◽  
...  

2016 ◽  
Vol 40 (11) ◽  
pp. 1699-1706 ◽  
Author(s):  
M S Svane ◽  
N B Jørgensen ◽  
K N Bojsen-Møller ◽  
C Dirksen ◽  
S Nielsen ◽  
...  

2019 ◽  
Vol 122 (10) ◽  
pp. 1142-1154
Author(s):  
Jaber Alyami ◽  
Ella Whitehouse ◽  
Gleb E. Yakubov ◽  
Susan E. Pritchard ◽  
Caroline L. Hoad ◽  
...  

AbstractWhole-grain cereal breakfast consumption has been associated with beneficial effects on glucose and insulin metabolism as well as satiety. Pearl millet is a popular ancient grain variety that can be grown in hot, dry regions. However, little is known about its health effects. The present study investigated the effect of a pearl millet porridge (PMP) compared with a well-known Scottish oats porridge (SOP) on glycaemic, gastrointestinal, hormonal and appetitive responses. In a randomised, two-way crossover trial, twenty-six healthy participants consumed two isoenergetic/isovolumetric PMP or SOP breakfast meals, served with a drink of water. Blood samples for glucose, insulin, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide (GIP), peptide YY, gastric volumes and appetite ratings were collected 2 h postprandially, followed by an ad libitum meal and food intake records for the remainder of the day. The incremental AUC (iAUC2h) for blood glucose was not significantly different between the porridges (P > 0·05). The iAUC2h for gastric volume was larger for PMP compared with SOP (P = 0·045). The iAUC2h for GIP concentration was significantly lower for PMP compared with SOP (P = 0·001). Other hormones and appetite responses were similar between meals. In conclusion, the present study reports, for the first time, data on glycaemic and physiological responses to a pearl millet breakfast, showing that this ancient grain could represent a sustainable alternative with health-promoting characteristics comparable with oats. GIP is an incretin hormone linked to TAG absorption in adipose tissue; therefore, the lower GIP response for PMP may be an added health benefit.


2001 ◽  
Vol 281 (3) ◽  
pp. G752-G763 ◽  
Author(s):  
Feruze Y. Enç ◽  
Neşe I˙meryüz ◽  
Levent Akin ◽  
Turgut Turoğlu ◽  
Fuat Dede ◽  
...  

We investigated the effect of acarbose, an α-glucosidase and pancreatic α-amylase inhibitor, on gastric emptying of solid meals of varying nutrient composition and plasma responses of gut hormones. Gastric emptying was determined with scintigraphy in healthy subjects, and all studies were performed with and without 100 mg of acarbose, in random order, at least 1 wk apart. Acarbose did not alter the emptying of a carbohydrate-free meal, but it delayed emptying of a mixed meal and a carbohydrate-free meal given 2 h after sucrose ingestion. In meal groups with carbohydrates, acarbose attenuated responses of plasma insulin and glucose-dependent insulinotropic polypeptide (GIP) while augmenting responses of CCK, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). With mixed meal + acarbose, area under the curve (AUC) of gastric emptying was positively correlated with integrated plasma response of GLP-1 ( r = 0.68 , P < 0.02). With the carbohydrate-free meal after sucrose and acarbose ingestion, AUC of gastric emptying was negatively correlated with integrated plasma response of GIP, implying that prior alteration of carbohydrate absorption modifies gastric emptying of a meal. The results demonstrate that acarbose delays gastric emptying of solid meals and augments release of CCK, GLP-1, and PYY mainly by retarding/inhibiting carbohydrate absorption. Augmented GLP-1 release by acarbose appears to play a major role in the inhibition of gastric emptying of a mixed meal, whereas CCK and PYY may have contributory roles.


2007 ◽  
Vol 10 (4) ◽  
pp. 720-724 ◽  
Author(s):  
Frank Greenway ◽  
Carol E. O'Neil ◽  
Laura Stewart ◽  
Jennifer Rood ◽  
Michael Keenan ◽  
...  

2004 ◽  
Vol 286 (5) ◽  
pp. G693-G697 ◽  
Author(s):  
Sarah Stanley ◽  
Katie Wynne ◽  
Steve Bloom

Many peptides are synthesized and released from the gastrointestinal tract and pancreas, including pancreatic polypeptide (PP) and the products of the gastrointestinal L cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY). Whereas their roles in regulation of gastrointestinal function have been known for some time, it is now evident that they also influence eating behavior. This review considers the anorectic peptides PYY, PP, GLP-1, and oxyntomodulin, which decrease appetite and promote satiety in both animal models and humans.


Sign in / Sign up

Export Citation Format

Share Document