Two Epichloë festucae var. lolii endophytes in Lolium perenne reduce larval populations of the wheat sheath miner, Cerodontha australis

Author(s):  
Joanne G. Jensen ◽  
Taryn A. Miller ◽  
Vanessa M. Cave ◽  
Richard D. Johnson ◽  
Barry Scott ◽  
...  
2007 ◽  
Vol 13 ◽  
pp. 480-480
Author(s):  
K.J. May ◽  
M.K. Bryant ◽  
X. Zhang ◽  
B. Ambrose ◽  
B. Scott

Epichloë festucae systemically colonises the intercellular spaces of perennial ryegrass (Lolium perenne) aerial tissues forming a mutually beneficial association between the fungus and host plant.


2012 ◽  
Vol 75 ◽  
pp. 128-139 ◽  
Author(s):  
Albert Koulman ◽  
T. Verne Lee ◽  
Karl Fraser ◽  
Linda Johnson ◽  
Vickery Arcus ◽  
...  

2021 ◽  
Vol 72 (9) ◽  
pp. 3410-3426
Author(s):  
Andrea Passarge ◽  
Fatih Demir ◽  
Kimberly Green ◽  
Jasper R L Depotter ◽  
Barry Scott ◽  
...  

Abstract Plants secrete various defence-related proteins into the apoplast, including proteases. Papain-like cysteine proteases (PLCPs) are central components of the plant immune system. To overcome plant immunity and successfully colonize their hosts, several plant pathogens secrete effector proteins inhibiting plant PLCPs. We hypothesized that not only pathogens, but also mutualistic microorganisms interfere with PLCP-meditated plant defences to maintain endophytic colonization with their hosts. Epichloë festucae forms mutualistic associations with cool season grasses and produces a range of secondary metabolites that protect the host against herbivores. In this study, we performed a genome-wide identification of Lolium perenne PLCPs, analysed their evolutionary relationship, and classified them into nine PLCP subfamilies. Using activity-based protein profiling, we identified four active PLCPs in the apoplast of L. perenne leaves that are inhibited during endophyte interactions. We characterized the L. perenne cystatin LpCys1 for its inhibitory capacity against ryegrass PLCPs. LpCys1 abundance is not altered during the mutualistic interaction and it mainly inhibits LpCP2. However, since the activity of other L. perenne PLCPs is not sensitive to LpCys1, we propose that additional inhibitors, likely of fungal origin, are involved in the suppression of apoplastic PLCPs during E. festucae infection.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 526 ◽  
Author(s):  
Sarah C. Finch ◽  
Michèle R. Prinsep ◽  
Alison J. Popay ◽  
Alistair L. Wilkins ◽  
Nicola G. Webb ◽  
...  

Epoxyjanthitrems I–IV (1–4) and epoxyjanthitriol (5) were isolated from seed of perennial ryegrass (Lolium perenne) infected with the endophytic fungus Epichloë festucae var. lolii. Although structures for epoxyjanthitrems I–IV have previously been proposed in the literature, this is the first report of a full structural elucidation yielding NMR (Nuclear magnetic resonance) assignments for all five epoxyjanthitrem compounds, and additionally, it is the first isolation of epoxyjanthitriol (5). Epoxyjanthitrem I induced tremors in mice and gave a dose dependent reduction in weight gain and feeding for porina (Wiseana cervinata), a common pasture pest in New Zealand. These data suggest that epoxyjanthitrems are involved in the observed effects of the AR37 endophyte on livestock and insect pests.


Author(s):  
Nazanin Noorifar ◽  
Matthew Savoian ◽  
Arvina Ram ◽  
Yonathan Lukito ◽  
Berit Hassing ◽  
...  

Epichloë festucae forms a mutualistic symbiotic association with Lolium perenne. This biotrophic fungus systemically colonizes the intercellular spaces of aerial tissues to form an endophytic hyphal network, and also grows as an epiphyte. However, little is known about the cell wall remodelling mechanisms required to avoid host defence and maintain intercalary growth within the host. Here we use a suite of molecular probes to show that the E. festucae cell wall is remodelled by conversion of chitin to chitosan during infection of L. perenne seedlings as the hyphae switch from free-living to endophytic growth. When hyphae transition from endophytic to epiphytic growth the cell wall is remodelled from predominantly chitosan to chitin. This conversion from chitin to chitosan is catalysed by chitin deacetylase. The genome of E. festucae encodes three putative chitin deacetylases, two of which (cdaA and cdaB) are expressed in planta. Deletion of either of these genes results in disruption of fungal intercalary growth in the intercellular spaces of plants infected with these mutants. These results establish that these two genes are required for maintenance of the mutualistic symbiotic interaction between E. festucae and L. perenne.


2020 ◽  
Vol 6 (4) ◽  
pp. 360
Author(s):  
Jennifer Geddes-McAlister ◽  
Arjun Sukumaran ◽  
Aurora Patchett ◽  
Heather A. Hager ◽  
Jenna C. M. Dale ◽  
...  

Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii. The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause of climatic change, is known to have many direct and indirect effects on plant growth. There is keen interest in how the nature of this plant–fungal interaction will change with climate change. Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant genetic profile and the potential for incompatible grass–fungus pairings. In this study, we used a single cultivar, “Alto”, of L. perenne. Each plant was infected with one of four strains of the endophyte: AR1, AR37, NEA2, and Lp19 (the “common strain”). We outcrossed the Alto mothers with pollen from a number of individuals from different ryegrass cultivars to create more genetic diversity in the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of genetic incompatibility between the host plants and the fungal strains. We conducted untargeted metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and within family and treatment groups. We identified a number of changes in both the proteome and metabalome. Taken together, our data set provides new understanding into the intricacy of the interaction between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.


2021 ◽  
Vol 7 (2) ◽  
pp. 148
Author(s):  
Aurora Patchett ◽  
Jonathan A. Newman

Lolium perenne infected with the fungal endophyte Epichloë festucae var. lolii have specific, endophyte strain-dependent, chemical phenotypes in their above-ground tissues. Differences in these chemical phenotypes have been largely associated with classes of fungal-derived alkaloids which protect the plant against many insect pests. However, the use of new methodologies, such as various omic techniques, has demonstrated that many other chemical changes occur in both primary and secondary metabolites. Few studies have investigated changes in plant metabolites exiting the plant in the form of root exudates. As root exudates play an essential role in the acquisition of nutrients, microbial associations, and defense in the below-ground environment, it is of interest to understand how plant root exudate chemistry is influenced by the presence of strains of a fungal endophyte. In this study, we tested the influence of four strains of E. festucae var. lolii (E+ (also known as Lp19), AR1, AR37, NEA2), and uninfected controls (E−), on L. perenne growth and the composition of root exudate metabolites. Root exudates present in the hydroponic water were assessed by untargeted metabolomics using Accurate-Mass Quadrupole Time-of-Flight (Q–TOF) liquid chromatography–mass spectrometry (LC–MS). The NEA2 endophyte strain resulted in the greatest plant biomass and the lowest endophyte concentration. We found 84 metabolites that were differentially expressed in at least one of the endophyte treatments compared to E− plants. Two compounds were strongly associated with one endophyte treatment, one in AR37 (m/z 135.0546 RT 1.17), and one in E+ (m/z 517.1987 RT 9.26). These results provide evidence for important changes in L. perenne physiology in the presence of different fungal endophyte strains. Further research should aim to connect changes in root exudate chemical composition with soil ecosystem processes.


2019 ◽  
Vol 129 ◽  
pp. 74-85 ◽  
Author(s):  
M. Rahnama ◽  
P. Maclean ◽  
D.J. Fleetwood ◽  
R.D. Johnson

2015 ◽  
Vol 28 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Yvonne Becker ◽  
Carla J. Eaton ◽  
Emma Brasell ◽  
Kimberley J. May ◽  
Matthias Becker ◽  
...  

Epichloë festucae is a mutualistic symbiont that systemically colonizes the intercellular spaces of Lolium perenne leaves to form a highly structured and interconnected hyphal network. In an Agrobacterium tumefaciens T-DNA forward genetic screen, we identified a mutant TM1066 that had a severe host interaction phenotype, causing stunting and premature senescence of the host. Molecular analysis revealed that the mutation responsible for this phenotype was in the cell-wall integrity (CWI) mitogen-activated protein kinase kinase (MAPKK), mkkA. Mutants generated by targeted deletion of the mkkA or the downstream mpkA kinase recapitulated the phenotypes observed for TM1066. Both mutants were defective in hyphal cell–cell fusion, formed intrahyphal hyphae, had enhanced conidiation, and showed microcyclic conidiation. Transmission electron microscopy and confocal microscopy analysis of leaf tissue showed that mutant hyphae were more abundant than the wild type in the intercellular spaces and colonized the vascular bundles. Hyphal branches failed to fuse but, instead, grew past one another to form bundles of convoluted hyphae. Mutant hyphae showed increased fluorescence with AF488-WGA, indicative of increased accessibility of chitin, a hypothesis supported by changes in the cell-wall ultrastructure. These results show that the CWI MAPK pathway is a key signaling pathway for controlling the mutualistic symbiotic interaction between E. festucae and L. perenne.


Sign in / Sign up

Export Citation Format

Share Document