scholarly journals Examining the Impacts of CO2 Concentration and Genetic Compatibility on Perennial Ryegrass—Epichloë festucae var lolii Interactions

2020 ◽  
Vol 6 (4) ◽  
pp. 360
Author(s):  
Jennifer Geddes-McAlister ◽  
Arjun Sukumaran ◽  
Aurora Patchett ◽  
Heather A. Hager ◽  
Jenna C. M. Dale ◽  
...  

Perennial ryegrass (Lolium perenne) is the most cultivated cool-season grass worldwide with crucial roles in carbon fixation, turfgrass applications, and fodder for livestock. Lolium perenne forms a mutualism with the strictly vertically transmitted fungal endophyte, Epichloë festucae var lolii. The fungus produces alkaloids that protect the grass from herbivory, as well as conferring protection from drought and nutrient stress. The rising concentration of atmospheric CO2, a proximate cause of climatic change, is known to have many direct and indirect effects on plant growth. There is keen interest in how the nature of this plant–fungal interaction will change with climate change. Lolium perenne is an obligately outcrossing species, meaning that the genetic profile of the host is constantly being reshuffled. Meanwhile, the fungus is asexual implying both a relatively constant genetic profile and the potential for incompatible grass–fungus pairings. In this study, we used a single cultivar, “Alto”, of L. perenne. Each plant was infected with one of four strains of the endophyte: AR1, AR37, NEA2, and Lp19 (the “common strain”). We outcrossed the Alto mothers with pollen from a number of individuals from different ryegrass cultivars to create more genetic diversity in the hosts. We collected seed such that we had replicate maternal half-sib families. Seed from each family was randomly allocated into the two levels of the CO2 treatment, 400 and 800 ppm. Elevated CO2 resulted in an c. 18% increase in plant biomass. AR37 produced higher fungal concentrations than other strains; NEA2 produced the lowest fungal concentrations. We did not find evidence of genetic incompatibility between the host plants and the fungal strains. We conducted untargeted metabolomics and quantitative proteomics to investigate the grass-fungus interactions between and within family and treatment groups. We identified a number of changes in both the proteome and metabalome. Taken together, our data set provides new understanding into the intricacy of the interaction between endophyte and host from multiple molecular levels and suggests opportunity to promote plant robustness and survivability in rising CO2 environmental conditions through application of bioprotective epichloid strains.

2021 ◽  
Vol 7 (2) ◽  
pp. 148
Author(s):  
Aurora Patchett ◽  
Jonathan A. Newman

Lolium perenne infected with the fungal endophyte Epichloë festucae var. lolii have specific, endophyte strain-dependent, chemical phenotypes in their above-ground tissues. Differences in these chemical phenotypes have been largely associated with classes of fungal-derived alkaloids which protect the plant against many insect pests. However, the use of new methodologies, such as various omic techniques, has demonstrated that many other chemical changes occur in both primary and secondary metabolites. Few studies have investigated changes in plant metabolites exiting the plant in the form of root exudates. As root exudates play an essential role in the acquisition of nutrients, microbial associations, and defense in the below-ground environment, it is of interest to understand how plant root exudate chemistry is influenced by the presence of strains of a fungal endophyte. In this study, we tested the influence of four strains of E. festucae var. lolii (E+ (also known as Lp19), AR1, AR37, NEA2), and uninfected controls (E−), on L. perenne growth and the composition of root exudate metabolites. Root exudates present in the hydroponic water were assessed by untargeted metabolomics using Accurate-Mass Quadrupole Time-of-Flight (Q–TOF) liquid chromatography–mass spectrometry (LC–MS). The NEA2 endophyte strain resulted in the greatest plant biomass and the lowest endophyte concentration. We found 84 metabolites that were differentially expressed in at least one of the endophyte treatments compared to E− plants. Two compounds were strongly associated with one endophyte treatment, one in AR37 (m/z 135.0546 RT 1.17), and one in E+ (m/z 517.1987 RT 9.26). These results provide evidence for important changes in L. perenne physiology in the presence of different fungal endophyte strains. Further research should aim to connect changes in root exudate chemical composition with soil ecosystem processes.


2007 ◽  
Vol 13 ◽  
pp. 480-480
Author(s):  
K.J. May ◽  
M.K. Bryant ◽  
X. Zhang ◽  
B. Ambrose ◽  
B. Scott

Epichloë festucae systemically colonises the intercellular spaces of perennial ryegrass (Lolium perenne) aerial tissues forming a mutually beneficial association between the fungus and host plant.


1999 ◽  
Vol 7 ◽  
pp. 151-156
Author(s):  
D.E. Hume ◽  
M.P. Rolston ◽  
D.B. Baird ◽  
W.J. Archie ◽  
M.R. Marsh

Emergence of volunteer perennial ryegrass (Lolium perenne L.) from seed buried in soil may contribute to the ingress of ryegrass in newly sown pastures. To investigate this, ryegrass seed infected with fungal endophyte (Neotyphodium lolii) was buried in nylon bags under pasture at two depths and at two sites (Palmerston North, Lincoln) in early/mid-autumn 1998. Seed bags were removed from the soil at intervals over the course of one year to determine seed viability and presence of endophyte in seedlings. Viability of seed declined rapidly to be 10% 3 months after burial. Further decline in viability was less, so that 12 months after burial 4% of seeds were still viable. Endophyte viability also declined, from 58% infection of seedlings at the time of burial to 21% at 12 months. This was at a slower rate than the decline in seed viability and from what might have been predicted from seed storage experiments. Viability of seed buried at 10 cm was greater than that buried at 3 cm (e.g., means, 10% and 1% after 6 months, respectively). This has implications for cultivation practices before pasture establishment. Seed buried at Lincoln maintained higher viability than seed buried at Palmerston North (e.g., means, 6% and 4% after 6 months, respectively), which was associated with drier soil conditions at Lincoln. Survival of buried seed may therefore be of greater importance in summer-dry east coast regions, compared with moist west coast environments or in wet years. The significance of buried ryegrass seed will depend on the numbers involved, but after 12 months there were still viable seeds left in the soil and some of these were infected with endophyte. This is important for pastures sown with ryegrass that is free of endophyte or infected with a selected endophyte, and for slower establishing grass species such as tall fescue. Keywords: endophyte, endophyte survival, Lolium perenne, Neotyphodium lolii, perennial ryegrass, seed burial, seed survival


2020 ◽  
Vol 8 (12) ◽  
pp. 1917
Author(s):  
Fang Li ◽  
Tingyu Duan ◽  
Yanzhong Li

Perennial ryegrass (Lolium perenne) is widely cultivated around the world for turf and forage. However, the plant is highly susceptible to disease and is sensitive to drought. The present study aims to determine the effect of the fungal endophyte Epichloë festucae var. lolii of perennial ryegrass on the combined stresses of drought and disease caused by Bipolaris sorokiniana in the greenhouse. In the experiment, plants infected (E+) or not infected (E−) with the fungal endophyte were inoculated with Bipolaris sorokiniana and put under different soil water regimes (30%, 50%, and 70%). The control treatment consisted of E+ and E− plants not inoculated with B. sorokiniana. Plant growth, phosphorus (P) uptake, photosynthetic parameters, and other physiological indices were evaluated two weeks after pathogen infection. The fungal endophyte in E+ plants increased P uptake, plant growth, and photosynthetic parameters but decreased the malondialdehyde concentration, proline content, and disease incidence of perennial ryegrass (p < 0.05). E+ plants had the lowest disease incidence at 70% soil water (p < 0.05). The study demonstrates that the fungal endophyte E. festucae var. lolii is beneficial for plant growth and stress tolerance in perennial ryegrass exposed to the combined stresses of drought and B. sorokiniana.


Crop Science ◽  
2020 ◽  
Vol 60 (2) ◽  
pp. 1090-1104
Author(s):  
Garett C. Heineck ◽  
Yinjie Qiu ◽  
Nancy J. Ehlke ◽  
Eric Watkins

2021 ◽  
Vol 9 (6) ◽  
pp. 1205
Author(s):  
Ian Tannenbaum ◽  
Brendan Rodoni ◽  
German Spangenberg ◽  
Ross Mann ◽  
Tim Sawbridge

Research into the bacterial component of the seed microbiome has been intensifying, with the aim of understanding its structure and potential for exploitation. We previously studied the intergenerational seed microbiome of one cultivar of perennial ryegrass with and without one strain of the commercially deployed fungal endophyte Epichloë festucae var. lolii. The work described here expands on our previous study by exploring the bacterial seed microbiome of different commercial cultivar/Epichloë festucae var. lolii combinations in collections of single seeds from the harvest year 2016. In this dataset, a cultivar effect could be seen between the seed microbiomes from cultivars Alto and Trojan. The bacterial component of the seed microbiome from pooled seeds from a single cultivar/E. festucae var. lolii combination harvested from 13 seed production farms around Canterbury in the year 2018 was also studied. This dataset allows the effect of different production locations on the bacterial seed microbiome to be examined. By comparing the two sets of data, bacteria from the genera Pantoea, Pseudomonas, Duganella, Massilia, and an unknown Enterobacteriaceae were observed to be in common. This core bacterial microbiome was stable over time but could be affected by supplemental taxa derived from the growth environment of the parental plant; differing microbiomes were seen between different seed production farms. By comparison to a collection of bacterial isolates, we demonstrated that many of the members of the core microbiome were culturable. This allows for the possibility of exploiting these microbes in the future.


Sign in / Sign up

Export Citation Format

Share Document