The role of Extracellular Matrix alterations in mediating Astrocytes damage, and Pericytes dysfunction in Alzheimer's disease: A comprehensive review

Author(s):  
Mai M. Anwar ◽  
Esra Özkan ◽  
Yasemin Gürsoy‐Özdemir
2021 ◽  
Vol 13 ◽  
Author(s):  
Yahan Sun ◽  
Sen Xu ◽  
Ming Jiang ◽  
Xia Liu ◽  
Liang Yang ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease with complex pathological characteristics, whose etiology and pathogenesis are still unclear. Over the past few decades, the role of the extracellular matrix (ECM) has gained importance in neurodegenerative disease. In this review, we describe the role of the ECM in AD, focusing on the aspects of synaptic transmission, amyloid-β-plaque generation and degradation, Tau-protein production, oxidative-stress response, and inflammatory response. The function of ECM in the pathological process of AD will inform future research on the etiology and pathogenesis of AD.


2011 ◽  
Vol 44 (06) ◽  
Author(s):  
K Lerche ◽  
M Willem ◽  
K Kleinknecht ◽  
C Romberg ◽  
U Konietzko ◽  
...  

2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


2020 ◽  
Vol 37 (2) ◽  
pp. 1-12
Author(s):  
Sara M. Kamal ◽  
Aliaa R.H. Mostafa ◽  
Sanaa M.R. Wahba

Sign in / Sign up

Export Citation Format

Share Document