Study on the fatigue life and damage accumulation of a compressor blade based on a modified nonlinear damage model

2017 ◽  
Vol 41 (5) ◽  
pp. 1077-1088 ◽  
Author(s):  
X. Fu ◽  
J. Zhang ◽  
J. Lin

Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 919 ◽  
Author(s):  
Huang ◽  
Ding ◽  
Li ◽  
Zhou ◽  
Huang

Fatigue damage accumulation theory is one of the core contents in structure fatigue strength design and life prediction. Among them, the nonlinear damage model can overcome the shortcomings of the linear damage model, which takes the loading sequence effect into account. Besides, the loading interaction cannot be ignored for its profound influence in damage accumulation behavior. In the paper, some commonly-used methods of the linear and nonlinear fatigue damage accumulation theory are investigated. In particular, a modified nonlinear fatigue damage accumulation model which considers the effects of loading sequences as well as loading interactions on fatigue life is developed, and a load interaction parameter is obtained by analyzing damage models which assumes that the load logarithm ratio between adjacent stress levels can characterize this phenomenon. Finally, the modified model is employed to predict the fatigue life of high pressure turbine disc. Moreover, comparison is made between the experimental data as well as the predicted lives using the Miner’s rule, the Ye’s model, and the modified model.



Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1835
Author(s):  
Xi Fu ◽  
Chao Ma ◽  
Jiewei Lin ◽  
Junhong Zhang

Axial compressor blades with a deformed initial torsion angle caused by aerodynamic excitation resonated at the working speed and changed the rule of fatigue damage accumulation. The fatigue life of a blade has a prediction error, even causing serious flight accidents if the effect of torque causing damage deterioration of the blade fatigue life is neglected. Therefore, in this paper, a uniaxial non-linear fatigue damage model was modified using the equivalent stress with torsional shear stress, and the proposed fatigue model including the torsional moment was used to study the compressor blade fatigue life. Then, the blade numerical simulation model was established to calculate the vibration characteristics under complex loads of airflow excitation and a rotating centrifugal force. Finally, the blade fatigue life under actual working conditions was predicted using the modified fatigue model. The results show that the interaction between centrifugal and aerodynamic loads affects the natural frequency, as the frequencies in modes dominated by bending deformation decreased whereas those dominated by torsional deformation increased. Furthermore, the blade root of the suction surface showed stress concentration, but there is an obvious difference of stress distribution and amplitude between the normal stress and the equivalent stress including torsional shear stress. The additional consideration of the torsional shear stress decreased the predicted fatigue life by 4.5%. The damage accumulation rate changes with the loading cycle, and it accelerates fast for the last 25% of the cycle, when the blade fracture may occur at any time. Thus, the aerodynamic excitation increased the safety factor of blade fatigue life prediction.



PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255048
Author(s):  
Liang Lei ◽  
Shi Xingang ◽  
Cui Yunhua ◽  
Wang Lefan ◽  
Yan Xiangcheng

MTS-810 material testing machine and acoustic emission signal analyzer were adopted to explore the mechanical behavior of concrete beams broken by the static load and the nonlinear cumulative damage law of concrete beams broken by fatigue bending from single-stage loading. Then, by introducing the Ramesh Talreja’s Damage Criterion, the damage rule of single-stage loading was extended to the damage accumulation rule under multi-stage loading, and the results were verified by the results of two-stage and three-stage fatigue loading tests. Two main conclusions are achieved: first, affected by four-point bending load, the fatigue life of the concrete specimen is in line with the law of the two-parameter Weibull distribution, namely the higher the stress level is, the shorter the fatigue life is. Second, an obvious nonlinear relationship was discovered in the damage of concrete. The model deduced in this paper and the Palmgren-Miner linear damage accumulation model were adopted to compare the test results of flexural fatigue under single, two and three stage loads. The calculation results of this model were more reliable.



2000 ◽  
Author(s):  
Y. Wei ◽  
C. L. Chow ◽  
M. K. Neilsen ◽  
H. E. Fang

Abstract This paper presents a method of TMF analysis based on the theory of damage mechanics to examine the fatigue damage accumulation in 63Sn-37Pb solder. The method is developed by extending a viscoplastic damage model proposed earlier by the authors (Wei, et al 1999, 2000). A computer simulation is carried out to calculate hysteresis loops at three different strain ranges. The damage-coupled fatigue damage model is applied to predict the cyclic softening behavior of the material and the prediction is found to agree well with the experiment. With a proposed failure criterion based on the concept of damage accumulation, the TMF model is also found to predict successfully the fatigue life of 63Sn-37Pb solder.





2020 ◽  
Vol 29 (7) ◽  
pp. 1117-1137 ◽  
Author(s):  
Wenlin Feng ◽  
Chunsheng Qiao ◽  
Shuangjian Niu ◽  
Zhao Yang ◽  
Tan Wang

The experimental results show that the creep properties of the rocks are affected by the initial damage, and the damage evolution also has a significant impact on the time-dependent properties of the rocks during the creep. However, the effects of the initial damage and the damage evolution are seldom considered in the current study of the rocks' creep models. In this paper, a new nonlinear creep damage model is proposed based on the multistage creep test results of the sandstones with different damage degrees. The new nonlinear creep damage model is improved based on the Nishihara model. The influences of the initial damage and the damage evolution on the components in the Nishihara model are considered. The creep damage model can not only describe the changes in three creep stages, namely, the primary creep, the secondary creep, and the tertiary creep, but also reflect the influence of the initial damage and the damage evolution on creep failure. The nonlinear least squares method is used to determine the parameters in the nonlinear creep damage model. The consistency between the experimental data and the predicted results indicates the applicability of the nonlinear damage model to accurately predict the creep deformation of the rocks with initial damage.



2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.



2021 ◽  
Vol 13 (2) ◽  
pp. 168781402199530
Author(s):  
Bixiong Huang ◽  
Shuci Wang ◽  
Shuanglong Geng ◽  
Xintian Liu

To more accurately predict the fatigue life of components under the action of random loads, it is necessary to explore the influence of the interaction between the load sequence and the load on the life prediction. Based on the Manson-Halford method and Corten-Dolan model, this paper establishes a fatigue cumulative damage model that takes into account both the load order and the interaction between loads, and also takes into account the loads near the fatigue limit. The fatigue life of mechanical parts under random load can be calculated through this model, which provides a theoretical basis for life prediction under random load spectrum. The fatigue life of mechanical parts under random load can be calculated through this model, which provides a theoretical basis for life prediction under random load spectrum. Comparing the calculation results of the proposed model with the results of Palmgren Miner, Manson-Halford method, and Corten-Dolan model, it is found that the fatigue damage model established can reasonably predict the fatigue life of parts. Comparison and verification of examples further prove the accuracy and reliability of the proposed model.



Sign in / Sign up

Export Citation Format

Share Document