scholarly journals Numerical Study on Vibration Response and Fatigue Damage of Axial Compressor Blade Considering Aerodynamic Excitation

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1835
Author(s):  
Xi Fu ◽  
Chao Ma ◽  
Jiewei Lin ◽  
Junhong Zhang

Axial compressor blades with a deformed initial torsion angle caused by aerodynamic excitation resonated at the working speed and changed the rule of fatigue damage accumulation. The fatigue life of a blade has a prediction error, even causing serious flight accidents if the effect of torque causing damage deterioration of the blade fatigue life is neglected. Therefore, in this paper, a uniaxial non-linear fatigue damage model was modified using the equivalent stress with torsional shear stress, and the proposed fatigue model including the torsional moment was used to study the compressor blade fatigue life. Then, the blade numerical simulation model was established to calculate the vibration characteristics under complex loads of airflow excitation and a rotating centrifugal force. Finally, the blade fatigue life under actual working conditions was predicted using the modified fatigue model. The results show that the interaction between centrifugal and aerodynamic loads affects the natural frequency, as the frequencies in modes dominated by bending deformation decreased whereas those dominated by torsional deformation increased. Furthermore, the blade root of the suction surface showed stress concentration, but there is an obvious difference of stress distribution and amplitude between the normal stress and the equivalent stress including torsional shear stress. The additional consideration of the torsional shear stress decreased the predicted fatigue life by 4.5%. The damage accumulation rate changes with the loading cycle, and it accelerates fast for the last 25% of the cycle, when the blade fracture may occur at any time. Thus, the aerodynamic excitation increased the safety factor of blade fatigue life prediction.

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1030 ◽  
Author(s):  
Jarosław Szusta ◽  
Andrzej Seweryn

This article presents an approach related to the modeling of the fatigue life of constructional metal alloys working under elevated temperature conditions and in the high-amplitude load range. The article reviews the fatigue damage accumulation criteria that makes it possible to determine the number of loading cycles until damage occurs. Results of experimental tests conducted on various technical metal alloys made it possible to develop a fatigue damage accumulation model for the LCF (Low Cycle Fatigue) range. In modeling, the material’s damage state variable was defined, and the damage accumulation law was formulated incrementally so as to enable the analysis of the influence of loading history on the material’s fatigue life. In the proposed model, the increment of the damage state variable was made dependent on the increment of plastic strain, on the tensile stress value in the sample, and also on the actual value of the damage state variable. The model was verified on the basis of data obtained from experiments in the field of uniaxial and multiaxial loads. Samples made of EN AW 2024T3 aluminum alloy were used for this purpose.


1988 ◽  
Vol 31 (3) ◽  
pp. 53-63
Author(s):  
Ronald Lambert

Simple closed-form expressions have been derived to predict fatigue life, damage accumulation, and other fatigue parameters of interest for structural elements with combined sinusoidal (sine) and narrowband Gaussian random stresses. These equations are expressed in common engineering terms. The sine and random only stress situations are special cases of the more general combined sine/random stress situation. They also have application for establishing vibration workmanship screens. Numerical examples are also included.


2020 ◽  
Vol 82 (2) ◽  
pp. 168-188
Author(s):  
I.A. Volkov ◽  
L.A. Igumnov ◽  
D.N. Shishulin ◽  
V.A. Eremeev

The paper considers processes of fatigue life of materials and structures in the exploitation conditions characterized by multiparametric nonstationary thermal-mechanical effects In the framework of mechanics of damaged media, a mathematical model is developed that describes processes of thermal-plastic deformation and fatigue damage accumulation in materials with degradation according to low- and high-cycle fatigue mechanisms (accounting for their interaction). The model consists of three interconnected parts: relations determining cyclic thermal-plastic behavior of a material, accounting for its dependence on the failure process; equations describing kinetics of fatigue damage accumulation; a strength criterion of the damaged material. The version of the defining relations of thermal plasticity is based on the notion of the yield surface and the principle of orthogonality of the plastic strain rate vector to the yield surface at the loading point and reflects the main effects of the process of cyclic plastic deformation of the material for arbitrarily complex trajectories of combined thermal-mechanical loading. The version of kinetic equations of fatigue damage accumulation is based on introducing a scalar parameter of damage degree and on energy-based principles, and takes into account the main effects of the nucleation, growth and merging of microdefects under arbitrarily complex loading regimes. A generalized form of an evolutionary equation of fatigue damage accumulation in low-cycle and high-cycle fatigue regions is introduced. The condition when the damage degree reaches its critical value is taken as the strength criterion of the damaged material. To assess the reliability and the scope of applicability of the developed defining relations of mechanics of damaged media, processes of thermal-plastic deformation and fatigue damage accumulation have been numerically analyzed, and the numerical results obtained have been compared with the data of full-scale experiments for a particular applied problem. The effect of the dropping frequency of a distillate on thermal cyclic fatigue life of the material of a heated surface of a tube has been numerically analyzed. The computational results for the fatigue damage accumulation processes under thermal pulsed loading are compared with experimental data. It is shown that the developed model describes both qualitatively and, accurately enough for engineering purposes, quantitatively the experimental data and can be effectively used for evaluating thermal-cyclic fatigue life of structures working in the conditions of multiaxial non-proportional regimes of combined thermal-mechanical loading.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Li Cui ◽  
Yin Su

Purpose Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the integrity of the bearing surface. The purpose of this paper is to find new rolling contact fatigue (RCF) life model of rolling bearing. Design/methodology/approach An elastic-plastic finite element (FE) fatigue damage accumulation model based on continuous damage mechanics is established. Surface roughness, surface residual stress and surface hardness of bearing rollers are considered. The fatigue damage and cumulative plastic strain during RCF process are obtained. Mechanism of early fatigue failure of the bearing is studied. RCF life of the bearing under different surface roughness, hardness and residual stress is predicted. Findings To obtain a more accurate calculation result of bearing fatigue life, the bearing surface integrity parameters should be considered and the elastic-plastic FE fatigue damage accumulation model should be used. There exist the optimal surface parameters corresponding to the maximum RCF life. Originality/value The elastic-plastic FE fatigue damage accumulation model can be used to obtain the optimized surface integrity parameters in the design stage of bearing and is helpful for promote the development of RCF theory of rolling bearing.


2019 ◽  
Vol 9 (23) ◽  
pp. 5251 ◽  
Author(s):  
Yuquan Bao ◽  
Yali Yang ◽  
Hao Chen ◽  
Yongfang Li ◽  
Jie Shen ◽  
...  

The evaluation of fatigue life through the mechanism of fatigue damage accumulation is still a challenging task in engineering structure failure analysis. A multiscale fatigue damage evolution model was proposed for describing both the mesoscopic voids propagation in the mesoscopic-scale and fatigue damage evolution process, reflecting the progressive degradation of metal components in the macro-scale. An effective method of defect classification was used to implement 3D reconstruction technology based on the MCT (micro-computed tomography) scanning damage data with ABAQUS subroutine. The effectiveness was validated through the comparison with the experimental data of fatigue damage accumulation. Our results indicated that the multiscale fatigue damage evolution model built a bridge between mesoscopic damage and macroscopic fracture, which not only used the damage variable in the macro-scale to characterize the mesoscopic damage evolution indirectly but also understood macroscopic material degradation behavior from mesoscale with sufficient precision. Furthermore, the multiscale fatigue damage evolution model could offer a new reasonable explanation of the effect of load sequence on fatigue life, and also could predict the fatigue life based on damage data by nondestructive testing techniques.


2011 ◽  
Vol 474-476 ◽  
pp. 609-614
Author(s):  
Lei Wang ◽  
Tian Zhong Sui ◽  
Wen Qiang Lin

The Fiber Reinforced Plastic (FRP) has been widely used in aircraft, spacecraft, watercraft and transportation because of its excellent mechanical characteristics. The fatigue characteristic of the composite laminate of FRP is important guarantee to the structure security and reliability. In this paper, according to the damage mechanical theory, a fatigue damage accumulation model based on stiffness degradation and the corresponding method of fatigue life prediction are presented. The composite material of T300/ epoxy-resin with high performance has been investigated. The tension-tension fatigue tests have been conducted on the composite laminates. The fatigue life prediction of the composite material is presented. It shows a good agreement to the experimental and theoretical results.


Author(s):  
Ирина Георгиевна Горячева ◽  
Елена Владимировна Торская

Рассматривается влияние остаточных напряжений, формирующихся при различных видах поверхностной обработки элементов пар трения, на скорость накопления контактно-усталостных повреждений, возникающих при циклическом нагружении поверхностей взаимодействующих тел в условиях трения качения при наличии поверхностного изнашивания. Исследовано влияние относительного проскальзывания, коэффициента трения скольжения, величины остаточных напряжений на распределение амплитудных значений максимальных касательных напряжений. Полученные результаты использованы для анализа влияния поля остаточных напряжений и скорости поверхностного изнашивания на процесс накопления контактно-усталостных повреждений. Residual stresses are formed during various types of surface treatment of elements of friction pairs. The effect of the residual stresses on the rate of fatigue damage accumulation is considered for the case of cyclic rolling contact in the presence of surface wear. The effect of relative slippage, friction coefficient, and residual stresses on the distribution of the amplitude values of the principal shear stress is studied. The results are used to analyze the effect of the residual stresses and the surface wear rate on the fatigue damage accumulation.


Sign in / Sign up

Export Citation Format

Share Document