scholarly journals Tropical forests are thermally buffered despite intensive selective logging

2017 ◽  
Vol 24 (3) ◽  
pp. 1267-1278 ◽  
Author(s):  
Rebecca A. Senior ◽  
Jane K. Hill ◽  
Suzan Benedick ◽  
David P. Edwards
2019 ◽  
Vol 5 (10) ◽  
pp. eaax2546 ◽  
Author(s):  
Sean L. Maxwell ◽  
Tom Evans ◽  
James E. M. Watson ◽  
Alexandra Morel ◽  
Hedley Grantham ◽  
...  

Intact tropical forests, free from substantial anthropogenic influence, store and sequester large amounts of atmospheric carbon but are currently neglected in international climate policy. We show that between 2000 and 2013, direct clearance of intact tropical forest areas accounted for 3.2% of gross carbon emissions from all deforestation across the pantropics. However, full carbon accounting requires the consideration of forgone carbon sequestration, selective logging, edge effects, and defaunation. When these factors were considered, the net carbon impact resulting from intact tropical forest loss between 2000 and 2013 increased by a factor of 6 (626%), from 0.34 (0.37 to 0.21) to 2.12 (2.85 to 1.00) petagrams of carbon (equivalent to approximately 2 years of global land use change emissions). The climate mitigation value of conserving the 549 million ha of tropical forest that remains intact is therefore significant but will soon dwindle if their rate of loss continues to accelerate.


Oryx ◽  
1983 ◽  
Vol 17 (3) ◽  
pp. 114-118 ◽  
Author(s):  
Andrew D. Johns

The destruction of tropical forests is perhaps one of the most widely discussed conservation problems of our time. But still scientists know relatively little about the ecosystem as a whole and, more specifically, little about the effects of, for example, selective logging on other forest species. The author, investigating the response of primates to logging in West Malaysia, discovered that, although logging initially causes mortality, the populations of the species he studied all recovered rapidly if the forest was left to regenerate.


2013 ◽  
Vol 27 (2) ◽  
pp. 354-363 ◽  
Author(s):  
GILBERT BAASE ADUM ◽  
MARKUS PETER EICHHORN ◽  
WILLIAM ODURO ◽  
CALEB OFORI-BOATENG ◽  
MARK-OLIVER RÖDEL

Author(s):  
Pablo Arroyo-Mora ◽  
Margaret Kalacska ◽  
Robin Chazdon ◽  
Daniel Civco ◽  
German Obando-Vargas ◽  
...  

2020 ◽  
Vol 345 ◽  
pp. 101-102
Author(s):  
Andes Hamuraby ROZAK

Tropical forests are a major reservoir of biodiversity and carbon (C), playing a pivotal role in global ecosystem function and climate regulation. However, most tropical forests, especially Borneo's forests in Southeast Asia, are under intense pressure and threatened by human activities such as logging, mining, agriculture and conversion to industrial plantations. Selective logging is known to reduce both above- and below-ground biomass by removing selected large trees, while increasing deadwood stocks through collateral logging damage and creating large gaps in the canopy. The extent of incidental damage, canopy opening and the rate of C recovery were shown to be primarily related to logging intensity. This thesis assesses the long-term effects of logging intensity on five main C pools in Dipterocarp forests in northern Borneo (Malinau District, North Kalimantan) along a logging intensity gradient ranging from 0 to 57% of initial biomass removed in 1999/2000. Our results showed that total C stocks 16 years after logging ranged from 218-554 Mg C/ha with an average of 314 Mg C/ha. A difference of 95 Mg C/ha was found between low logging intensity (< 2.1% of initial biomass lost) and high logging intensity (> 19%). Most C (approx. 77%) was found in living trees, followed by soil (15%), deadwood (6%) and a small fraction in litter (1%). The imprint of logging intensity was still detectable 16 years after logging. Logging intensity was thus shown to be the main driver explaining the reduction of AGC>20, BGC>20, in deadwood and total C stocks and an increase in deadwood. Our results quantify the long-term effects of logging on forest C stocks, especially in AGC and deadwood. High logging intensity (50% reduction of initial biomass) reduced total C stocks by 27%. AGC recovery was lower in high logging intensity plots, suggesting lowered forest resilience to logging. Our study showed that keeping logging intensity below 20% of the initial biomass can limit the long-term effects of logging on AGC and deadwood stocks.


2005 ◽  
Vol 9 (22) ◽  
pp. 1-18 ◽  
Author(s):  
Cuizhen Wang ◽  
Jiaguo Qi ◽  
Mark Cochrane

Abstract Tropical forests are being subjected to a wide array of disturbances in addition to outright deforestation. Selective logging is one of the most common disturbances ongoing in the Amazon, which results in significant changes in forest structure and canopy integrity. Assessing forest canopy fractional cover (fc) is one way of measuring forest degradation caused by selective logging. In this study we applied a linear mixture model to a vegetation index domain to map canopy fractional cover in tropical forests in the Amazonian state of Mato Grosso, Brazil. The modified soil adjusted vegetation index (MSAVI) was selected as the optimal vegetation index in the model because it is most linearly related to green canopy abundance up to leaf area index = 4.0. In the canopy fc map derived from the Landsat Enhanced Thematic Mapper Plus (ETM+) image, the fc distribution ranged from 0 to 0.4 in clear-cut areas, higher than 0.8 in undisturbed forests, and a wider range of 0.3–1.0 in degraded forests. The fc map was validated with the 1-m panchromatic sharpened IKONOS image. In the logged forests the ETM+ estimated fc values were clustered along the 1:1 line in the scatterplot with the IKONOS estimated fc and had a squared correlation coefficient (R2) of 0.8.


2020 ◽  
Vol 12 (3) ◽  
pp. 430 ◽  
Author(s):  
Yhasmin Mendes de Moura ◽  
Heiko Balzter ◽  
Lênio S. Galvão ◽  
Ricardo Dalagnol ◽  
Fernando Espírito-Santo ◽  
...  

Tropical forests hold significant amounts of carbon and play a critical role on Earth´s climate system. To date, carbon dynamics over tropical forests have been poorly assessed, especially over vast areas of the tropics that have been affected by some type of disturbance (e.g., selective logging, understory fires, and fragmentation). Understanding the multi-temporal dynamics of carbon stocks over human-modified tropical forests (HMTF) is crucial to close the carbon cycle balance in the tropics. Here, we used multi-temporal and high-spatial resolution airborne LiDAR data to quantify rates of carbon dynamics over a large patch of HMTF in eastern Amazon, Brazil. We described a robust approach to monitor changes in aboveground forest carbon stocks between 2012 and 2018. Our results showed that this particular HMTF lost 0.57 m·yr−1 in mean forest canopy height and 1.38 Mg·C·ha−1·yr−1 of forest carbon between 2012 and 2018. LiDAR-based estimates of Aboveground Carbon Density (ACD) showed progressive loss through the years, from 77.9 Mg·C·ha−1 in 2012 to 53.1 Mg·C·ha−1 in 2018, thus a decrease of 31.8%. Rates of carbon stock changes were negative for all time intervals analyzed, yielding average annual carbon loss rates of −1.34 Mg·C·ha−1·yr−1. This suggests that this HMTF is acting more as a source of carbon than a sink, having great negative implications for carbon emission scenarios in tropical forests. Although more studies of forest dynamics in HMTFs are necessary to reduce the current remaining uncertainties in the carbon cycle, our results highlight the persistent effects of carbon losses for the study area. HMTFs are likely to expand across the Amazon in the near future. The resultant carbon source conditions, directly associated with disturbances, may be essential when considering climate projections and carbon accounting methods.


Sign in / Sign up

Export Citation Format

Share Document