The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis

2018 ◽  
Vol 53 (9) ◽  
pp. 2212-2219 ◽  
Author(s):  
Zhi-Wei Liu ◽  
Xin-An Zeng ◽  
Jun-Hu Cheng ◽  
De-Bao Liu ◽  
Rana Muhammad Aadil
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Andreas Bauer ◽  
Mirjana Minceva

AbstractThe biotechnological production of the carotenoid astaxanthin is done with the microalgae Haematococcus pluvialis (H. pluvialis). Under nutrient deficiency and light stress, H. pluvialis accumulates astaxanthin intracellularly and forms a resistant cyst cell wall that impedes direct astaxanthin extraction. Therefore, a complex downstream process is required, including centrifugation, mechanical cell wall disruption, drying, and supercritical extraction of astaxanthin with CO2. In this work, an alternative downstream process based on the direct extraction of astaxanthin from the algal broth into ethyl acetate using a centrifugal partition extractor (CPE) was developed. A mechanical cell wall disruption or germination of the cysts was carried out to make astaxanthin accessible to the solvent. Zoospores containing astaxanthin are released when growth conditions are applied to cyst cells, from which astaxanthin can directly be extracted into ethyl acetate. Energy-intensive unit operations such as spray-drying and extraction with supercritical CO2 can be replaced by directly extracting astaxanthin into ethyl acetate. Extraction yields of 85% were reached, and 3.5 g of oleoresin could be extracted from 7.85 g homogenised H. pluvialis biomass using a CPE unit with 244 mL column volume. A techno-economic analysis was done for a hypothetical H. pluvialis production facility with an annual biomass output of 8910 kg. Four downstream scenarios were examined, comparing the novel process of astaxanthin extraction from homogenised cyst cells and germinated zoospores via CPE extraction with the conventional industrial process using in-house or supercritical CO2 extraction via an external service provider. After 10 years of operation, the highest net present value (NPV) was determined for the CPE extraction from germinated zoospores.


2016 ◽  
Vol 199 ◽  
pp. 300-310 ◽  
Author(s):  
Dong-Yeon Kim ◽  
Durairaj Vijayan ◽  
Ramasamy Praveenkumar ◽  
Jong-In Han ◽  
Kyubock Lee ◽  
...  

2018 ◽  
Vol 54 (2) ◽  
pp. 583-590 ◽  
Author(s):  
Zhi-Wei Liu ◽  
Zhou Yue ◽  
Xin-An Zeng ◽  
Jun-Hu Cheng ◽  
Rana Muhammad Aadil

2016 ◽  
Vol 18 (5) ◽  
pp. 1261-1267 ◽  
Author(s):  
Rupali K. Desai ◽  
Mathieu Streefland ◽  
Rene H. Wijffels ◽  
Michel H. M. Eppink

Pre-treatment of H. pluvialis with an aqueous ionic liquid solution permeabilises the cell wall and astaxanthin can be subsequently extracted with ethyl acetate without mechanical disruption.


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


2018 ◽  
Vol 28 (4) ◽  
pp. 169-178 ◽  
Author(s):  
Hyun-Ju Hwang ◽  
Yong Tae Kim ◽  
Nam Seon Kang ◽  
Jong Won Han

The algal cell wall is a potent barrier for delivery of transgenes for genetic engineering. Conventional methods developed for higher plant systems are often unable to penetrate or remove algal cell walls owing to their unique physical and chemical properties. Therefore, we developed a simple transformation method for <i>Chlamydomonas reinhardtii</i> using commercially available enzymes. Out of 7 enzymes screened for cell wall disruption, a commercial form of subtilisin (Alcalase) was the most effective at a low concentration (0.3 Anson units/mL). The efficiency was comparable to that of gamete lytic enzyme, a protease commonly used for the genetic transformation of <i>C. reinhardtii</i>. The transformation efficiency of our noninvasive method was similar to that of previous methods using autolysin as a cell wall-degrading enzyme in conjunction with glass bead transformation. Subtilisin showed approximately 35% sequence identity with sporangin, a hatching enzyme of <i>C. reinhardtii</i>, and shared conserved active domains, which may explain the effective cell wall degradation. Our trans­formation method using commercial subtilisin is more reliable and time saving than the conventional method using autolysin released from gametes for cell wall lysis.


2017 ◽  
Vol 239 ◽  
pp. 204-210 ◽  
Author(s):  
C. Safi ◽  
L. Cabas Rodriguez ◽  
W.J. Mulder ◽  
N. Engelen-Smit ◽  
W. Spekking ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document