scholarly journals Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Andreas Bauer ◽  
Mirjana Minceva

AbstractThe biotechnological production of the carotenoid astaxanthin is done with the microalgae Haematococcus pluvialis (H. pluvialis). Under nutrient deficiency and light stress, H. pluvialis accumulates astaxanthin intracellularly and forms a resistant cyst cell wall that impedes direct astaxanthin extraction. Therefore, a complex downstream process is required, including centrifugation, mechanical cell wall disruption, drying, and supercritical extraction of astaxanthin with CO2. In this work, an alternative downstream process based on the direct extraction of astaxanthin from the algal broth into ethyl acetate using a centrifugal partition extractor (CPE) was developed. A mechanical cell wall disruption or germination of the cysts was carried out to make astaxanthin accessible to the solvent. Zoospores containing astaxanthin are released when growth conditions are applied to cyst cells, from which astaxanthin can directly be extracted into ethyl acetate. Energy-intensive unit operations such as spray-drying and extraction with supercritical CO2 can be replaced by directly extracting astaxanthin into ethyl acetate. Extraction yields of 85% were reached, and 3.5 g of oleoresin could be extracted from 7.85 g homogenised H. pluvialis biomass using a CPE unit with 244 mL column volume. A techno-economic analysis was done for a hypothetical H. pluvialis production facility with an annual biomass output of 8910 kg. Four downstream scenarios were examined, comparing the novel process of astaxanthin extraction from homogenised cyst cells and germinated zoospores via CPE extraction with the conventional industrial process using in-house or supercritical CO2 extraction via an external service provider. After 10 years of operation, the highest net present value (NPV) was determined for the CPE extraction from germinated zoospores.

2016 ◽  
Vol 18 (5) ◽  
pp. 1261-1267 ◽  
Author(s):  
Rupali K. Desai ◽  
Mathieu Streefland ◽  
Rene H. Wijffels ◽  
Michel H. M. Eppink

Pre-treatment of H. pluvialis with an aqueous ionic liquid solution permeabilises the cell wall and astaxanthin can be subsequently extracted with ethyl acetate without mechanical disruption.


2016 ◽  
Vol 199 ◽  
pp. 300-310 ◽  
Author(s):  
Dong-Yeon Kim ◽  
Durairaj Vijayan ◽  
Ramasamy Praveenkumar ◽  
Jong-In Han ◽  
Kyubock Lee ◽  
...  

2018 ◽  
Vol 54 (2) ◽  
pp. 583-590 ◽  
Author(s):  
Zhi-Wei Liu ◽  
Zhou Yue ◽  
Xin-An Zeng ◽  
Jun-Hu Cheng ◽  
Rana Muhammad Aadil

2020 ◽  
Vol 10 (2) ◽  
pp. 513 ◽  
Author(s):  
Ramasamy Praveenkumar ◽  
Jiye Lee ◽  
Durairaj Vijayan ◽  
Soo Youn Lee ◽  
Kyubock Lee ◽  
...  

Haematococcus pluvialis accumulates astaxanthin, which is a high-value antioxidant, during the red cyst stage of its lifecycle. The development of a rigid cell wall in the cysts hinders the recovery of astaxanthin. We investigated morphological changes and cell disruption of mature H. pluvialis cyst cells while using high-pressure homogenization for astaxanthin extraction. When treated with French-press-cell (pressure, 10,000–30,000 psi; passage, 1–3), the intact cyst cells were significantly broken or fully ruptured, releasing cytoplasmic components, thereby facilitating the separation of astaxanthin by ethyl acetate. Fluorescence microscopy observations using three different fluorescent dyes revealed that a greater degree of cell breakage caused greater external dispersion of astaxanthin, chlorophyll, lipids, proteins, and carbohydrates. The mechanical treatment resulted in a high cell disruption rate of up to 91% based on microscopic cell typing and Coulter methods. After the ethyl acetate extraction, the astaxanthin concentration significantly increased by 15.2 mg/L in proportion to the increase in cell disruption rate, which indicates that cell disruption is a critical factor for solvent-based astaxanthin recovery. Furthermore, this study recommends a synergistic combination of the fast instrumental particle-volume-distribution analysis and microscope-based morphologic phenotyping for the development of practical H. pluvialis biorefinery processes that co-produce various biological products, including lipids, proteins, carbohydrates, chlorophyll, and astaxanthin.


2021 ◽  
Vol 11 (16) ◽  
pp. 7201
Author(s):  
Andreas Bauer ◽  
Mirjana Minceva

The microalgae Haematococcus pluvialis is used for the biotechnological production of astaxanthin. The red carotenoid accumulates in the cytoplasm under unfavorable conditions. Astaxanthin synthesis is associated with the transformation of motile vegetative cells into non-motile cyst cells. In the industrial process, after harvesting, the cyst cells are mechanically disrupted, dried, and finally, astaxanthin is extracted with supercritical CO2. The germination of the cyst cells represents an interesting alternative, replacing the mechanical cyst cell wall disruption. When cyst cells are exposed to favorable growth conditions, germination of the cyst cells occurs and zoospores are released after a certain time. These zoospores show a much weaker cell matrix compared to cyst cells. In this study, germination under phototrophic, mixotrophic, and heterotrophic conditions was examined. Glucose was used as the carbon source for mixotrophic and heterotrophic germination. Applying heterotrophic conditions, up to 80% of the cells were in the zoospore stage 49 h after the start of germination, and extraction yields of up to 50% were achieved using the solvent ethyl acetate for the extraction of astaxanthin from the algal broth containing zoospores. An extraction yield of up to 64% could be achieved by doubling the nitrate concentration and combining mixotrophic and heterotrophic cultivation.


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1297
Author(s):  
Juntae Kim ◽  
Hyo-Dong Han ◽  
Wang Yeol Lee ◽  
Collins Wakholi ◽  
Jayoung Lee ◽  
...  

Currently, the pork industry is incorporating in-line automation with the aim of increasing the slaughtered pork carcass throughput while monitoring quality and safety. In Korea, 21 parameters (such as back-fat thickness and carcass weight) are used for quality grading of pork carcasses. Recently, the VCS2000 system—an automatic meat yield grading machine system—was introduced to enhance grading efficiency and therefore increase pork carcass production. The VCS2000 system is able to predict pork carcass yield based on image analysis. This study also conducted an economic analysis of the system using a cost—benefit analysis. The subsection items of the cost-benefit analysis considered were net present value (NPV), internal rate of return (IRR), and benefit/cost ratio (BC ratio), and each method was verified through sensitivity analysis. For our analysis, the benefits were grouped into three categories: the benefits of reducing labor costs, the benefits of improving meat yield production, and the benefits of reducing pig feed consumption through optimization. The cost-benefit analysis of the system resulted in an NPV of approximately 615.6 million Korean won, an IRR of 13.52%, and a B/C ratio of 1.65.


Sign in / Sign up

Export Citation Format

Share Document